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PREFACE

This book is an outgrowth of a course which I have developed at Oberlin
College for advanced undergraduates. The purpose of the course is to
introduce students to the foundations of mathematics, to give them
initial training in the axiomatic method in mathematics, and to provide
them with the necessary tools to cope successfully with graduate level
courses having an abstract and axiomatic orientation. It may be in-
ferred that as I use the term "foundations of mathematics" I under-
stand it to mean an analysis of fundamental concepts of mathematics,
intended to serve as a preparation for studying the superstructure from
a general and unified perspective.

The book contains adequate material for any one of a variety of one-
year upper undergraduate courses with a title resembling "Introduction
to Foundations of Mathematics." That is, there is sufficient material for
a year's course in which the instructor chooses to emphasize the construc-
tion of standard mathematical systems, or the role of logic in connection
with axiomatic theories, or, simply, mathematical logic. Further, by
focusing attention on certain chapters, it can serve as a text for one-
semester courses in set theory (Chapters 1, 2, 5, 7), in logic (Chapters
1, 4, 5, 6, 9), and in the development of the real number system (Chap-
ters 1, 2, 3, 5, 8).

The book has been organized so that not until the last chapter does
symbolic logic play a significant role.

Most of the material presented might be described as the mathematics
whose development was directly stimulated by investigations pertaining
to the real number system. That is, the development and the study of
the real number system serve as the underlying theme of the book. I
will elaborate on this statement after outlining the contents.

Chapter 1 is an introduction to so-called intuitive set theory. Along
with the algebra of sets the theory is developed to the point where the
notion of a relation can be defined. The remainder of the chapter is
concerned with the special types of relations called equivalence rela-
tions, functions, and ordering relations. Sufficient examples and exercises
are provided to enable the beginner to assimilate these concepts fully.

Chapter 2 begins with a discussion of a type of system (an "integral
system") which incorporates several features of the natural number
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sequence, as this notion is understood intuitively. Once it is proved that
there is essentially only one integral system, we take as our definition of
the natural number system some one integral system. After the arith-
metic of this system is developed, careful consideration is given to both
definition and proof by induction. There follows an account of Cantor's
theory of cardinal and ordinal numbers. In Section 8 is introduced the
remaining principle of intuitive set theory, the axiom of choice, along
with several equivalent propositions. In Section 9, with the aid of the
axiom of choice, the arithmetic of infinite cardinals is reduced to a
triviality. Section 10 is devoted to propositions of a different kind which
are equivalent to the axiom of choice. Finally, in Section 11, the classical
paradoxes (that is, bona fide contradictions) of intuitive set theory are
described.

In Chapter 3 the natural number sequence is extended to the real
number system via the integers and the rational numbers, with Cauchy se-
quences being used in the extension of the rationale to the reals. Repeti-
tious details have been cut to a minimum in the hope of relieving the
boredom of this essential chapter.

Chapter 4 is devoted to an intuitive exposition of symbolic logic. The
simplest [)art of the classical variety of this subject, the statement cal-
culus, is treated in some detail. Although the much more comprehensive
system, the first-order predicate calculus, is barely more than outlined,
by following the same pattern as that employed for the statement cal-
culus, it is hoped that the exposition will be intelligible. Probably every
serious student of mathematics should understand symbolic logic to the
extent it is presented here, if only to be able to take advantage of its
symbolism and know how to form the negation of "the function f is con-
tinuous at x = a" in a mechanical way.

Chapter 5 consists of an exposition of the axiomatic method, the
notion of an axiomatic theory, and related topics as they are encountered
in everyday mathematics. It is only the italicized qualification that justifies
the inclusion of this chapter. For in view of the tremendous accomplish-
ments in the area of the foundations of mathematics in recent years, this
chapter is antiquated. An introduction to modern investigations appears
in Chapter 9.

Chapter 6 contains the first full-blown development of an axiomatic
theory. The theory that we have chosen for our prime example, that of
Boolean algebras, is easily susceptible, of investigation. Moreover, as we
show in the latter part of the chapter, it has close connections with some
of the logic discussed earlier.
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In Chapter 7 the Zerrnelo-Fracnkel theory of sets is outlined. In the
last section contact is made with another well-known axiomatization of
classical set theory-that due to von Neurnann. Zerinelo-Fraenkcl set
theory was chosen for exposition because its development closely parallels
that of intuitive set theory. However, for transfinite arithmetic the von
Neumann theory of ordinal and cardinal numbers (which can be ini-
bedded in every suitable axiolnatization of set theory) was selected be-
cause of its elegance.

In Chapter 8 several axiomatic theories which fall within the realm
of modern algebra are introduced. The primary purpose is to enable us
to give self-contained characterizations in turn of the system of integers,
of rational numbers, and, finally, of real numbers. This is clone in the
last three sections of the chapter.

Finally, there is Chapter 9, which is an introductory account of rela-
tively recent investigations of the foundations of mathematics. A dis-
tinctive feature of the modern approach is the explicit incorporation of
a theory of logic into an axiomatic theory. We restrict our attention to
so-called first-order theories, that is, those axiomatic theories for which
the predicate calculus of first order provides a logical base. Sections 4-7
give a rigorous account for first-order theories of the material discussed
at the intuitive level in Chapter 5. Much of this has been available here-
tofore only in more technically formidable accounts. In Sections 8-10
we round out our discussion of the. axiomatic method with the prescnta-,
tion of three famous theorems about formal axiomatic mathematics.
One of these, obtained by Alonzo Church in 1936, asserts that there is
no automatic procedure for deciding whether an arbitrary formula of
(an axioinatizccl version of) the predicate calculus of first order is a
theorem. One of the other two theorems (both obtained by Kurt Godel
in 1931) asserts that a sufficiently rich formal system of arithmetic, if
consistent, contains a statement which is neither provable nor refutable.
The last asserts that if such a system of arithmetic is consistent, then it
is impossible to prove just that.

Our account of these theorems is neither self-contained nor rigorous,
but, we believe, adequate for the reader to gain an understanding of
their meaning and significance. In defense of such an approach we shall
say only that we believe this coverage will meet the needs of most stu-
dents: Those who desire a complete and rigorous account must be pre-
pared to spend a considerable amount of time in mastering a variety of
technical details.

We conclude our outline of the contents by substantiating an earlier
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remark that the real number system serves as the underlying theme of
the book. Indeed, apart from Chapter 6, all of the material discussed is
directly related to the real number system in the sense that it fits into
the category of (a) a preliminary to the development of the system, or (b)
developing some facet of either the system itself or an extension of it,
or (c) developing tools to either characterize the system or study some
property of it.

A Note to the Instructor
Since mathematical logic is often not an outstanding feature of a

mathematician's repertoire, it may be helpful to clarify its role in this
book. Chapter 4 should serve as an adequate introduction for a new-
comer into this discipline and be more than adequate to cope with the
references to logic which are made in Chapters 5 and 6. As has been
stated in the above, it is only in Chapter 9 that logic (in the form of
the first-order predicate calculus) enters explicitly into the mathematical
development. But even here, for the instructor who has just a modest
background in logic, with the standard texts by Church, Kleene, and
Rosser at his side, all will go well.

Further, we call attention to the bibliographical notes which appear
at the end of most chapters. 't'hese give references to original papers or
to expositions which can serve as collateral reacting material for students.

Numerous acknowledgments of assistance in this undertaking are in
order. First there are those which appear in my book titled Sets, Logic,
and Axiomatic Theories (which is made up of some of the more elementary
portions of this hook) -. to the National Science Foundation and Oberlin
College, for making it possible for nrc: to devote full time to writing for
one year, and to Professor Angelo Margaris, for numerous helpful sug-
gestions. In addition, I gratefully acknowledge the constructive criticism
rendered in very precise form by Professor Anil Nerode, who read a
near-final version of the manuscript at the request of the publisher.
Professor Leon Henkin made numerous suggestions for the improvement
of Chapter 9; any shortcomings that remain are my sole responsibility.
Finally, I am most grateful to my wife - not only for her typing of the
manuscript again and again but also for managing to keep her family
intact at the same tinge.

January 1963 ROBERT R. STOLL
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CHAPTER 1 Sets and Relations

THE THEORY OF SETS as a mathematical discipline originated
with the German mathematician G. Cantor (1845-1918). A complete
account of its birth and childhood is out of the question here, since a
considerable knowledge of mathematics is a prerequisite for its compre-
hension. Instead, we adopt the uneasy compromise of a brief sketch of
these matters. If this proves too difficult for the reader, nothing is lost ;
on the other hand, if it is at least partially understood, something may
be gained.

Cantor's investigation of questions pertaining to trigonometric series
and series of real numbers led him to recognize the need for a means of
comparing the magnitude of infinite sets of numbers. To cope with this
problem, he introduced the notion of the power (or size) of a set by
defining two sets as having the same power if the members of one can
be paired with those of the other. Since two finite sets can be paired if
and only if they have the same number of members, the power of a finite
set may be identified with a counting number. Thus the notion of power
for infinite sets provides a generalization of everyday counting numbers.
Cantor developed the theory, including an arithmetic, of these gener-
alized (or transfinite) numbers and in so doing created a theory of sets.
His accomplishments in this area are regarded as an outstanding ex-
ample of mathematical creativity.

Cantor's insistence on dealing with the infinite as an actuality -he
regarded infinite sets and transfinite numbers as being on a par with
finite sets and counting numbers - was an innovation at that time.
Prejudices against this viewpoint were responsible for the rejection of
his work by some mathematicians, but others reacted favorably because
the theory provided a proof of the existence of transcendental numbers.
Other applications in analysis and geometry were found, and Cantor's
theory of sets won acceptance to the extent that by 1890 it was recog-
nized as an autonomous branch of mathematics. About the turn of the
century there was some change in attitude with the discovery that con-
tradictions could be derived within the theory. That these were not
regarded as serious defects is suggested by their being called paradoxes--

I



2 Seta and Relations I CAI A P. 1

defects which could be resolved, once full understanding was acquired.
The problems posed by Cantor's theory, together with its usefulness,
gradually created independent interest in a general theory of abstract
sets in which his ideas appeared in greatly extended form. That general
theory forms the basis of this chapter.

Specifically, this chapter discusses, within the framework of set theory,
three important mathematical concepts: function, equivalence relation,
and ordering relation. Sections 3-6 contain the necessary preliminaries,
and Sections 1 and 2 describe our point of departure for Cantor's theory.

One might question the wisdom of choosing a starting point which is
known to lead ultimately to disaster. However, we contend that the
important items of this chapter are independent of those features which
characterize the Cantorian or "naive" approach to set theory. Indeed,
any theory of sets, if it is to serve as a basis for mathematics, will include
the principal definitions and theorems appearing in this chapter. Only
the methods we employ to obtain some of these results are naive. No
irreparable harm results in using such methods; they are standard tools
in mathematics.

In this chapter we assume that the reader is familiar with the systems
of integers, rational numbers, real numbers, and complex numbers.
Knowledge in these areas will enlarge the possibilities for constructing
examples to assist the assimilation of definitions, theorems, and so on.
We shall reserve the underlined letters Z, Q, R, and C for the sets of
integers, rational numbers, real numbers, and complex numbers, re-
spectively, and the symbols Z+, ni, and R+ for the sets of positive
integers, positive rationale, and positive reals, respectively.

1. Cantor's Concept of a Set

Let us consider Cantor's concept of the term set and then analyze
briefly its constituent parts. According to his definition, a set S is any
collection of definite, distinguishable objects of our intuition or of our
intellect to be conceived as a whole. The objects are called the elements
or members of S.

The essential point of Cantor's concept is that a collection of objects
is to be regarded as a single entity (to be conceived as a whole). The
transfer of attention from individual objects to collections of individual
objects as entities is commonplace, as evidenced by the presence in our
language of such words as "bunch," "covey," "pride," and "flock."
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With regard to the objects which may be allowed in a set, the phrase
"objects of our intuition or of our intellect" gives considerable freedom.
First, it gives complete liberty so far as the nature of the objects com-
prising a set is concerned. Green apples, grains of sand, or prime num-
bers are admissible constituents of sets. However, for mathematical
applications it is reasonable to choose as rnerrrbers Such mathematical
entities as points, lines, numbers, sets of numbers, and so on. Second,
it permits the consideration of sets whose members cannot, for one
reason or another, be explicitly exhibited. In this connection one is
likely to think first of infinite sets, for which it is not even theoretically
possible to collect the members as an assembled totality. The set of all
prime numbers and the set of all points of the Euclidean plane having
rational coordinates in it given coordinate system are examples of this.
On the other hand, there are finite sets which display the same degree
of intangibility as any infinite set.

An old example which serves to bear out this contention begins with
the premise that a typesetting machine with 10,000 characters (these
would include the lower-case and capital letters of existing alphabets in
various sizes of type, numerals, punctuation, and a blank character for
spacing) would be adequate for printing in any language. ("The exact size
of the set of characters is not at issue; the reader may substitute for
10,000 any integer greater than 1.) Let it be agreed that by a "book"
is meant a printed assemblage of 1,000,000 characters, including blank
spaces. Thus a book may contain front 0 to 1,000,000 actual characters.
Now consider the set of all books. Since there are 10,000 possibilities
available for each of the 1,000,000 positions in a book, the total number
of books is equal to I0,0001.000,1t11This is a large (but finite!) number. In

addition to books of gibberish there would appear in the set all textbooks
ever written or planned, all newspapers ever printed, all government
pamphlets, all train schedules, all logarithm tables ever computed, and
so on, and so on. The magnitude eludes comprehension to the same
degree as does that of an infinite set.

The rernaining key words in Cantor's concept of a set are "distin-
guishable" and "definite." The intended meaning of the former, as lie
used it, was this: With regard to any pair of ol.rjects qualified to appear
as elements of a particular set, one must be able to determine whether
they are different or the same. The attribute "definite" is interpreted
as meaning that if given a set and an object, it is possible to determine
whether the object is, or is not, a member of the set. The implication
is that a set is completely determined by its members.
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2. The Basis of intuitive Set Theory

According to Cantor, a set is made up of objects called members or
elements (we shall use both terms synonymously). The assumption that
if presented with a specific object and a specific set, one can determine
whether or not that object is a member of that set means this: If the
first blank in ". _- -is a member of __._._" is filled in with the name
of an object, and the second with the name of a set, the resulting sen-
tence is capable of being classified as true or false. Thus, the notion of
membership is a relation between objects and sets. We shall symbolize
this relation by C and write

x C A
if the object x is a member of the set A. If x is not a member of A, we
shall write

Further,
xr;[A.

X1, X2, "',x. CA
will be used as an abbreviation f o r "x, C A and x2 C A and and
X.

C A"
In terms of the membership relation, Cantor's assumption that a set

is determined by its members may be stated in the following form.
The intuitive principle of extension. Two sets are equal i(f (if and

only if) they have the same members.
The equality of two sets X and Y will be denoted by

X=Y,
and the inequality of X and Y by

X I'.

Among the basic properties of this relation are

X = Y,
X = Y implies Y =;- X,
X = Y and Y = Z imply X = 7,

for all sets X, Y, and 7.
It should be understood that the principle of extension is a nontrivial

assumption about the membership relation. In general, a proof of the
equality of two specified sets A and B is in two parts: one part demon-
strates that. if x C A, then x C 13; the other demonstrates that if x C 13,
then x C A. An example of such a proof is given below.
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That (uniquely determined) set whose members are the objects
x,, x2, , x will be written

I XI, x2, ... , xn } .

In particular, {x}, a so-called unit set, is the set whose sole member is x.

EXAMPLES
2.1. Let us prove that the set A of all positive even integers is equal to the

set B of positive integers which are expressible as the sum of two positive odd
integers. First we assume that x C A and deduce that x E B. If x C A, then
x = 2m, and hence x = (2m - 1) + 1, which means that x E B. Next, we
assume that x E B and deduce that x C A. If x E B, then x = (2p - 1) +
(2q - 1), and hence x = 2(p + q - 1), which implies that x C A. Thus, we
have proved that A and B have the same members.

2.2. (2, 4, 6) is the set consisting of the first three positive even integers.
Since 12, 4, 6) and (2, 6, 4) have the same rncmnbers, they are equal sets.
Moreover, {2, 4, 6) _ {2, 4, 4, 61 for the same reason.

2.3. The members of a set may themselves be sets. For instance, the geo-
graphical area known as the United States of America is a set of 50 member
states, each of which, in turn, is a set of counties (except Alaska, which has
boroughs). Again, {{1, 3}, {2, 4}, {5.61; is a set with three mc:*rbers, namely,
{1, 3), {2, 4), and {5, 6). The sets {{1, 2}, (2, 3)) and (1, 2, 3} are unequal,
since the former has {1, 2) and (2, 31 as members, and the latter has 1, 2, and
3 as members.

2.4. The sets {(1, 2}} and {1, 21 are unequal, since the former, a unit set,
has (1, 2) as its sole member and the latter has I and 2 as its members. This
is an illustration of the general remark that an object and the set whose sole
member is that object are distinct from each other.

We digress briefly to comment on the alphabets which we shall eiii-
ploy in discussing set theory. Usually, lower-case italic English letters
will denote elements, and, for the time being, capital italic letters will
denote sets which contain them. Later, lower-case Greek letters will be
introduced for a certain type of set. If the members of a set are themselves
sets, and if this is noteworthy in the discussion, capital script letters will
be used for the containing set, and it will be called a collection of sets.
For example, we might have occasion to discuss the collection iF of all
finite sets A of integers x. As a rule of thumb, the level of a set within a
hierarchy of sets under consideration is suggested by the size and gaudi-
ness of the letter employed to denote it.

Although the brace notation is practical for explicitly defining sets
made up of a few elements, it is too unwieldly for defining sets having
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a large, finite number of elements and useless for infinite sets (sets
having infinitely many elements). How can sets with a large number
of elements be described? In this connection one instinctively tends to
differentiate between finite and infinite sets on the grounds that a finite
set can be realized as an assembled totality whereas an infinite set can-
not. However, a large finite set (for example, the set of books described
in Section 1) is as incapable of comprehension as is any infinite set.
On the basis of such examples one must conclude that the problem of
how to describe efficiently a large finite set and the problem of how to
describe an infinite set are, for all practical purposes, one and the same.

A commonly accepted solution, devised by Cantor, is based on the
concept of a "formula in x." At this time we offer only the following
intuitive description. Let its understand by a statement a declarative sen-
tence capable of being classified as either true or false. Then, by a
formula in x we understand a finite sequence made up from words and
the symbol x such that when each occurrence of x is replaced by the
same name of an object of an appropriate nature a statement results.
For instance, each of the following is a formula in x:

5 divides x; x'2 + x + 1 > x;
x loves John; x2 = 2.
x < x;

In contrast, neither of the following is a formula in x:
for all x, x2-4 = (x -2)(x-}-2);
there is an x such that x2 < 0.

Rather, each is simply a statement. A grammarian might describe a
formula in x, alternatively, as a sentence which asserts something about
x. Clearly, each sentence of the first list above has this quality, whereas
neither of the second list has. A still different approach to this concept
is by way of the notion of function as it is used in elementary mathe-
matics. A formula in x may be described as a function of one variable
such that for a suitable domain the function values are statements.

We shall use a capital English letter followed by the symbol (x) to
denote a formula in x. 11' , in a given context, P(x) stands for a particular
formula, then P(a) stands for the sank formula with a in place of x.

Our objective, that of describing sets in terms of formulas, is achieved
by way of the acceptance of the following principle.

The intuitive principle of abstraction. A formula P(x) defines a set A
by the convention that the members of A are exactly those objects a such that P(a)
is a true statement.
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Because sets having the same members are equal, a given formula
determines exactly one set which, in mathematics, is usually denoted by

{ xI P(x) 1,

read "the set of all x such that P(x)." "Thus a E {xl P(x) } if P(a) is a
true statement. It may be said that the decision as to whether a given
object a is a member of {xI P(x) } is that of whether a possesses a certain
property (or quality). Because of this, when a formula in x, P(x), is
applied to a set construction it is commonly called a property of x and,
indeed, the defining property of {xIP(x) }. Further, our principle of abstrac-
tion is then described by the assertion that "every property determines
a set."

We shall admit the possibility of the occurrence of symbols other than
x in a formula in x. If P(x) is a formula in x and y is a symbol that does
not occur in I'(x), then, as properties, P(x) and P(y) are indistinguish-
able, and so {xl P(x) } = { yI P(y) 1. This need not be the case, however,
if y does occur in P(x). For example,

{xlx is divisible by u} = {yl y is divisible by u},
but

{ xl x is divisible by y } {y l y is divisible by y 1.

Again, if F(x) and G(x) are two properties such that F(x) holds for x
when and only when G(x) holds for x, then {xI F(x) I = {xiG(x) }, by an
application of the principle of extension. For example,

{xl.xCAand xCB} = {xlxCBand xCA},
and

{xlxEL}andx<51 = {xlxCZI and(x4-1)1<29}.

EXAMPLES
2.5. The introduction of infinite sets by defining properties is a familiar pro-

cedure to a student of analytic geometry. One need merely recall the customary
definition of such geometric loci as the conic sections. For instance, the circle
of radius 2 centered at the origin is the set of all x such that x is a point in the
plane and at a distance of two units from the origin.

2.6. The following are examples of easily recognized sets define(] by prop-
erties.

(a) {xlx is an integer greater than 1 and having no divisors less than or equal
to x'1").

(b) {.rlx is a positive integer less than 9).
(c) {xlx is a line of slope 3 in a coordinate plane; .

(d) {xlx is a continuous function on the closed interval from 0 to 1}.
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2.7. {xJx = x, or x = x2 or or x = is the set we earlier agreed to de-
note by {x,, Y2) -. .)

2.8. In some cases our language makes possible, by way of a property, a
briefer definition of a finite set than can be achieved by an enumeration of the
elernents. For example, it is shorter to define a particular set of 100 people by
the property "x is a senator" than by enumerating names of the members.

2.9. If A is a set, then x C A is a formula in x and may be used as a defining
property of a set. Since y C {x{x C A) iffy C A, we have

A = {xlx E A),
by virtue of the principle of extension.

Various modifications of the basic brace notation for sets are used.
For example, it is customary to write

{x C AIP(x) }

instcad of {xIx C A and P(x)} for the set of all objects which are both
members of A and have property P(x). An alternative description of
this set is "all members of A which have property P(x)," and it is
this description that the new notation emphasizes. As illustrations,
{x E RIO < x < 11 denotes the set of all real numbers between 0
and 1, inclusive, and {x C Q'-Ix' < 2} denotes the set of all positive
rationals whose square is less than 2.

If P(x) is a property and f is a function, then

{ AX) IP(x) }

will be used to denote the set of all y for which there is an x such that
x has property P(x) and y = f(x). For example, instead of writing

{yj there is an x such that x is an integer and y = 2x}

we shall write
{2xIx C Z}.

Again, {x21x C Z} denotes the set of squares of integers. Such notations
have natural extensions; in general, one's intuition is an adequate guide
for interpreting examples. For instance, in a coordinate plane, where
the points arc identified by the members of the set R2 of all ordered
pairs (x, y) t of real numbers x and y, it is reasonable to interpret
{(x, y) C R21y = 2x} as the line through the origin having slope 2.

The principle of set extension, the principle of abstraction, and the
principle of choice (which will not be formulated until there is need for
it) constitute the working basis of Cantor's theory of sets. It is of interest

f Here we arc using a notation which will be discussed in detail later.
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to note that although we made an attempt, prior to introducing the
first two principles, to describe what a set is, neither of these principles
nor the third includes a definition of the word set. Rather, each is
merely an assumption about sets. The basic concept used to enunciate
these principles is membership. Consequently, the membership relation
for sets, rather than the notion of set itself, assumes the role of the prin-
cipal concept of set theory.

We have already mentioned that contradictions can be derived within
intuitive set theory. The source of trouble is the unrestricted use of the
principle of abstraction. Of the known contradictions the simplest to
describe is that discovered by Bertrand Russell in 1901. It is associated
with the set R having the formula x (Z x as its defining property and
may be stated as: On one hand, R C R, and on the other hand, R (Z R.
The reader can easily supply informal proofs of these two contradictory
statements.

EXERCISES
2.1. Explain why 2 E (1, 2, 3).
2.2. Is 11, 2) E ({1, 2, 3}, (1, 3), 1, 2)? Justify your answer.
2.3. Try to devise a set which is a member of itself.
2.4. Give an example of sets A, B, and C such that A E B, B E C, and

A (Z C.
2.5. Describe in prose each of the following sets.
(a) {x C Zlx is divisible by 2 and x is divisible by 3).
(b) {xlx C A and x C B).
(c) {xlxEAorxCB}.
(cl) {x C 1"'-Ix C {x C 11 for some integer y, x = 2y} and x C {x C ZI for

some integer y, x = 3y} } .
(e) {x21x is a prime}.
(f) {a/bCQla+b = 1 and a, b CQ).
(g) {(x, y) C R21x2 + y2 = 1).
(h) {(x, y) C R21y = 2x and y = 3x).
2.6. Prove that if a, b, c, and d are any objects, not necessarily distinct from

one another, then {(a), {a, b)) _ ({c}, {c, d}} if both a = c and b = d.

3. Inclusi

We now introduce two further relations for sets. If A and B are sets,
then A is included in B, symbolized by

ACB,
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iff each member of A is a member of B. In this event one also says that
A is a subset of B. Further, we agree that B includes A, symbolized by

B Q A,

is synonymous with A is included in B. Thus, A C B and B Q A each
means that, for all x, if x E A, then x C B. The set A is properly
included in B, symbolized by

A C B

(or, alternatively, A is a proper subset of B, and B properly includes
A), iff A C B and A i;-6 B. For example, the set of even integers is
properly included in the set Z of integers, and the set (, of rational
numbers properly includes Z.

Among the basic properties of the inclusion relation are

XCX;
X9 Yand YC Zimply XC Z;
XC Yand YC_Ximply X= Y.

The last of these is the formulation, in terms of the inclusion relation,
of the two steps in a proof of the equality of two sets. That is, to prove
that X = Y, one proves that A' C Y and then that Y C X.

For the relation of proper inclusion, only time analogue of the second
property above is valid. The proof that X C Y and Y C Z imply
A' C Z is required in one of the exercises at the end of this section.
'T'here the reader will also find further properties of proper inclusion,
so far as its relationship to inclusion is concerned.

Since beginners tend to confuse the relations of membership and
inclusion, we shall take every opportunity to point out distinctions.
At this time we note that the analogues for membership of the first two
of the above properties for inclusion are false. For example, if X is the
:,et of prime numbers, then X (Z X. Again, although I E Z and
Z C (Z}, it is not the case that 1 C (Z.}, since Z is the sole member
of (Z).

We turn now to a discussion of the subsets of a set, that is, the sets
included in a set. This is our first example of an important procedure
in set theory-the formation of new sets from an existing set. The
principle of abstraction may be used to define subsets of a given set.
Indeed, if P(x) is a formula in x and A is a set, then the formula

x C A and P(x)

determines that subset of A which we have already agreed to write as
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(x E AI P(x) }. If A is a set and we choose P(x) to be x :X x, the result
is {x E: Ajx 54 x), and this set, clearly, has no elements. The principle
of extension implies that there can be only one set with no elements.
We call this set the empty set and symbolize it by

0.
The empty set is a subset of every set. To establish this it must be

proved that if A is a set, then each member of 0 is a rnentber of A.
Since 0 has no members, the condition is automatically fulfilled. Al-
though this reasoning is correct, it may not be satisfying. An alternative
proof which might be more comforting is an indirect one. Assume that
it is false that 0 C A. This can be the case only if there exists some
member of 0 which is not a member of A. But this is impossible, since 0
has no inerrmbers. Hence, 0 9= A is not false; that is, 0 C A.

Each set A 0 0 has at least two distinct subsets, A and 0. More-
over, each member of A determines a subset of A; if a E A, then
(a} C A. There are occasions when one wishes to speak not of indi-
vidual subsets of a set, but of the set of all subsets of that set. The set
of all subsets of a set A is the power set of A, symbolized by

(P(A).

Thus, 61(A) is an abbreviation for

(BBB C Al.

For instance, if A = (1, 2, 31, then

6'(A) = (A, (1, 21, (1, 31, (2, 31, 111, (2}, (3}, 01.

As another instance of the distinction between the membership and
inclusion relations we note that if 11 C A, then B C 61(A), and if a C A,
then (a) C A and (a) C 6'(A).

The name "power set of A" for the set of all subsets of A has its
origin in the case where A is finite; then w(A) has 2" members if A
has n members. To prove this, consider the following scheme for de-
scribing a subset B of A = jai, , it sequence of n 0's and l's
where the first entry is 1 if a, C. B and 0 if a, (,E B and where the second
entry is 1 if a2 E B and 0 if a2 (Z B, and so on. Clearly, the subsets of A
can be paired with the set of all such sequences of 0's and l's; for ex-
ample, if n = 4, then (a,, a,} determines, and is determined by, the
sequence 1010. Since the total number of such sequences is equal to
2.2 . 2 = 2", the number of elements of 6'(A) is equal to 2".
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EXERCISES
3.1. Prove each of the following, using any properties of numbers that may

be needed.
(a) {x C II for an integcry, x = 6y} _ {x C Il for integers u and n, x = 2u

and x = 3u).
(b) {x C R1 for a real number y, x = y2} = {x C RJx > 01,
(c) {x C II for an integer y, x = 6y} C {x CL_I for an integer y, x = 2y}.
3.2. Prove each of the following for sets A, B, and C.
(a) B a n d
(b) IfA C Band BCC, then A CC.
(c) If AC13and BCC,then ACC.
(d) IfA C Band BCC, then A CC.
3.3. Give an example of sets A, B, C, D, and E which satisfy the following

conditions simultaneously: A C B, B C C, C C D, and D C E.
3.4. Which of the following arc true for all sets A, B, and C?
(a) IfA V Band B(ZC, thenA IZC.
(b) If A B and B C, then A Pd- C.
(c) If A C B and / C, then A 1Z C.
(d) If A C Band BCC, then C CT- A.
(e) If A C Band B C C, then A VC.
3.5. Show that for every set A, A C 0 if A = 0.
3.6. Let A,, A2, . , A. be n sets. Show that

A,CA2C ... if Ar=A2= ... =A,,.
3.7. Give several examples of a set X such that each element of X is a subset

of X.
3.8. List the members of 61(A) if A = {{1, 2), {3), 1).
3.9. For each positive integer n, give an example of a set A. of n elements

such that for each pair of elements of A,,, one member is an element of the other.

4. Operations for Sets

We continue with our description of methods for generating new sets
from existing sets by defining two methods for composing pairs of sets.
These so-called operations for sets parallel, in certain respects, the
familiar operations of addition and multiplication for integers. The
union (sum, join) of the sets A and B, symbolized by A U 13 and read
"A union B" or "A cup B," is the set of all objects which are members
of either A or B; that is,

A U B = {x1xrC A or x C B).
Here the inclusive sense of the word "or" is intended. Thus, by defi-
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nition, x E A U B ifr x is a member of at least one of A and B. For
example,

11, U {1,3,4) = 11,2,3,41.
The intersection (product, meet) of the sets A and 13, symbolized by
A n B and read "A intersection 13" or "A cap B," is the set of all
objects which are members of both A and B; that is,

AnB= {x{xCAandxCB).
Thus, by definition, x C An B iff x C A and x C B. For example,

{1,2,31 n {l,3,4) = {1,31.
It is left as an exercise to prove that for every pair of sets A and B the
following inclusions hold :

09;AnB_AcAUB.
Two sets A and B are disjoint iff A n 13 = 0, and they intersect

iff A n B 0. A collection of sets is a disjoint collection iff each
distinct pair of its member sets is disjoint. A partition of a set X is a
disjoint collection a of noncrnpty and distinct subsets of X such that
each member of X is a member of some (and, hence, exactly one)
member of a. For example, { 11, 21, 131, 14, 5) 1 is a partition of
11,2,3,4,5).

A further procedure, that of complementation, for generating sets
from existing sets employs a single set. The absolute complement of
a set A, symbolized by

A,

is {xix (Z A). The relative complement of A with respect to a set X is
X n A; this is usually shortened to X - A, read "X minus A." 'Thus

X - A = {xCXJx(Z A),
that is, the set of those members of X which are not members of A. The
symmetric difference of sets A and B, symbolized by A ± B, is defined
as follows :

A±B=(A-B)U(B-A).
This operation is commutative, that is, A + B = B + A, and associ-
ative, that is, (A + B) + C = A + (B + C). Further, A + A = 0,
and A + 0 = A. Proofs of these statements are left as exercises.

If all sets under consideration in a certain discussion arc subsets of a
set U, then U is called the universal set (for that discussion). As ex-
amples, in elementary number theory the universal set is Z, and in
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plane analytic geometry the universal set is the set of all ordered pairs
of real numbers. A graphic device known as a Venn diagram is used
for assisting one's thinking on complex relations which may exist among
subsets of a universal set 11. A Venn diagram is a schematic representa-
tion of scats by sets of points: the universal set U is represented by the
points within a rectangle, and a subset A of U is represented by the
interior of a circle or some other simple region within the rectangle.
The complement of A relative to If, which we may abbreviate to A
without confusion, is the part of the rectangle outside the region repre-
senting A, as shown in Figure 1. If the subsets A and 13 of U are repre-

A shaded
Figure 1

Any shaded
Figure 2

AUB shaded
Figure 3

sented in this way, then A n B and A U B are represented by shaded
regions, as in Figure 2 and Figure 3, respectively. Disjoint sets are repre-
sented by nonoverlapping regions, and inclusion is depicted by dis-
playing one region lying entirely within another. These are the
ingredients for constructing the Venn diagram of an expression
compounded from several sets by means of union, intersection, com-
plementation, and inclusion. The principal applications of Venn
diagrams are to problems of simplifying a given complex expression
and simplifying given sets of conditions among several subsets of a
universe of discourse. Three simple examples of this sort appear below.
In many cases such diagrams are inadequate, but they may be helpful
in connection with the algebraic approach developed in the next
section.

EXAMPLES
4.1. Suppose A and B are given sets such that A - B = B - A = 0. Can

the relation of A to B be expressed more simply? Since A - B = 0 means
A f T3 0, the regions representing A and T? do not overlap (Figure 4).
Clearly, B = B, so we conclude (Figure 5) that A _C B. Conversely, if A C B,
it is clear that A - B = 0. We conclude that A - B = 0 iff A C B. Inter-
changing A and B gives B - A = 0 iff B C A. Thus the given relations hold
betweenAandBif-fACBandBCAor,A=B.
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Figure 4 Figure 5
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Figure 6

4.2. Let us investigate the question of whether it is possible to find three sub-
sets A, B, and C of U such that

C00,AnB5- 0,AnC=o,(AfB)-C=Qf.
The second condition implies that A and B intersect and, therefore, incidentally
that neither is empty. From Example 4.1 the fourth condition amounts to
A fl B C C, from which it follows that the first is superfluous. The associated
Venn diagram indicates that A and C intersect; that is, the validity of the second
and fourth conditions contradicts the third. Hence, there do not exist sets satis-
fying all the conditions simultaneously.

4.3. Given that F, C, and L are subsets of U such that

F9 G,G(1 LCF,Lf1F=0.
Is it possible to simplify this set of conditions? The Venn diagram (Figure 6)
represents only the first and third conditions. The second condition forces L
and C to be disjoint, that is, G fl L = 0. On the other hand, if F C C and
G fl L = 0, then all given conditions hold. Thus F C G and G fl L = 0
constitute a simplification of the given conditions.

EXERCISES
(Note: Venn diagrams are not to be used in Exercises 4.1-4.8.)
4.1. I'rove that for all sets A and B, 0 A f B9. A U B.
4.2. Let I be the universal set, and let

A = {x C LI for some positive integer y, x = 2y},
B = {x C 1I for some positive integer y, x = 2y - 1),
C = {xCZIx < 10).

Describe A, A _U B, c, A - C, and C - (A U B), either in prose or by a de-
fining property.

4.3. Consider the following subsets of Z1, the set of positive integers:

A = {x C "G_}i for some integer y, x = 2y},
B = {x C 7--1 1 for some integer y, x = 2y + 1),
C = {x C `L_i-I for some integer y, x = 3y}.

(a) DescribeAflC, B U C, and B - C.
(b) Verify that A fl (B U C) = (A (1 B) U (An C).
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4.4. If A is any set, what are each of the following sets? A n o, A U 0,
A - 0, A - A, 0 - A.

4.5. Determine o n (0), {O) n {O), {O, {O}} - 0, {0, (0}} -
(0), {0, (0)) - ((0)).

4.6. Suppose A and B are subsets of U. Show that in each of (a), (b), and (c)
below, if any one of the relations stated holds, then each of the others holds.

(a) ACB,21 QIi,AU13= B, AnB=A.
(b) AnB= 0,AC F3, BCI1.
(c) AUB= U,ACB,f3CA.
4.7. Prove that for all sets A, B, and C,

(AnB) UC= An (BU C) if CCA.
4.8. Prove that for all sets A, B, and C,

(A - 13) - C= (A - C) - (B-C).
4.9. (a) Draw the Vcnn diagram of the symmetric difference, A + B, of

sets A and B.
(b) Using a Venn diagram, show that symmetric difference is a com-

mutative and associative operation.
(c) Show that for every set A, A + A = 0 and A + 0 = A.

4.10. The Venn diagram for subsets A, B, and C of U, in general, divides
the rectangle representing U into eight nonoverlapping regions. Label each
region with a combination of A, B, and C which represents exactly that region.

4.11. With the aid of a Venn diagram investigate the validity of each of the
following inferences:

(a) If A, B, and C are subsets of U such that A n B C C and A U C C B,
then AfC=0.

(b) if A, B, and C are subsets of U such that A C B -U C and B C A 3 C,
then B = 0.

5. The Algebra of Sets

If we were to undertake the treatment of problems more complex
than those examined above, we would feel the need for more system-
atic procedures for carrying out calculations with sets related by in-
clusion, union, intersection, and corriplementation. That is, what would
be called for could appropriately be named "the algebra of sets"-a
development of the basic properties of U, n, , and C together with
interrelations. As such, the algebra of sets is intended to be the set-
theoretic analogue of the familiar algebra of the real numbers, which
is concerned with properties of +, , and < and their interrelations
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The basic ingredients of the algebra of sets are various identities-
equations which are true whatever the universal set U and no matter
what particular subsets the letters (other than U and 0) represent.

Our first result lists basic properties of union and intersection. For
the sake of uniformity, all of these have been formulated for subsets of
a universal set U. However, for some of the properties this is a purely
artificial restriction, as an examination of the proofs will show.

THEOREM 5.1 . For any subsets A, B, C of a set U the following
equations are identities. Here t1 is an abbreviation for U - A.

1.AU(BUC) 1'.An(Bnc)
=(AUB)UC. =(AnB)nC.

2. AUB=BUA. 2'. AnB=BnA.
3.AU(Bnc) 3'.An(BUC)

= (A U B) n(A U C). =(AnB)U(Anc).
4. AU 0 A. 4'. An U=A.
5.AUt1=U. 5'.An:=0.
Proof. Each assertion can be verified by showing that the set on
either side of the equality sign is include([ in the set on the other side.
As an illustration we shall prove identity 3.

(a) Proof that A U (B n C) S (A U B) n (A U C). Let x C A U
(BnC).Then xEAor xEBnC.If xCA,then xCAUB
and x C A U C, and hence x is a member of their intersection.
If xCBnC., then xC BandxEC.IlencexCA U B and
x E A U C, so again x is a member of their intersection.

(b) Proof that (A U B) n (A U C) C A U (BnC). Let x C
(AUB)n(AUC).Then xEAUBand xEAUC.Hence
x C A, or x E B and x C C. These imply that x C A U (B n C).

Identities 1 and 1' are referred to as the associative laws for union
and intersection, respectively, and identities 2 and 2' as the commuta-
tive laws for these operations. Identities 3 and 3' are the distributive
laws for union and intersection, respectively. The analogy of proper-
ties of union and intersection with properties of addition and znultipli-
cation, respectively, for numbers, is striking at this point. For instance,
3' corresponds precisely to the distributive law in arithmetic. That there
are also striking differences is illustrated by 3, which has no analogue
in arithmetic.



18 Sets and Relations I G H A P. 1

According to the associative law, identity 1, the two sets that can
be formed with the operation of union from sets A, B, and C, in that
order, are equal. We agree to denote this set by A U B U C. Then the
associative law asserts that it is immaterial as to how parentheses are
introduced into this expression. Using induction, this result can be
generalized to the following. The sets obtainable frorn given sets A,,
A2, , An, in that order, by use of the operation of union are all equal
to one another. The set defined by A,, A2, , A. in this way will be
written as

A,UA2U UA..
In view of identity I' there is also a corresponding generalization for
intersection. With these general associative laws on the record we can
state the general commutative law: If 1', 2', , n' are 1, 2, n in
any order, then

A,UA2U... UA4=A1.UA2.U ... UA,,,.

We can also state the general distributive laws:
112fl ... r) B.)

= (A U fl (A U B2) n ... fl (A U
Afl(B,UB2U ...

U (A U (A fl B.).
'T'hese can also be proved by induction.

Detailed proofs of the foregoing properties of unions and intersec-
tions of sets need make no reference to the membership relation; that
is, these properties follow solely from those listed in Theorem 5.1. The
same is true of those further properties which appear in the next theo-
rem. Such facts may be regarded as the origin of the "axiomatic ap-
proach" to the algebra of sets developed in Chapter 6. One derivative
of this approach is the conclusion that every theorem of the algebra of
sets is derivable from 1 5 and 1'-5'.

These ten properties have another interesting consequence. In Theo-
rem 5.1 they are paired in such a way that each member of a pair is
obtainable from the other member by interchanging U and fl and,
simultaneously, 0 and U. An equation, or an expression, or a state-
ment within the framework of the algebra of sets obtained from an-
other by interchanging U and fl along with 0 and U throughout is
the dual of the original. We contend that the dual of any theorem
expressible in terms of U, fl, and , and which can be proved using
only identities 1-5 and 1'--5', is also a theorem. Indeed, suppose that
the proof of such a theorem is written as a sequence of steps and that
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opposite each step is placed the justification for it. By assumption, each
justification is one of 1-5, one of 1'- 5', or a premise of the theorem.
Now replace the identity or relation in each step by its dual. Since
1-5 and 1'--5' contain with each its dual, and the dual of each premise
of the original theorem is now a premise, the dual of each justification
in the original proof is available to serve as a justification for a step
in the new sequence which, therefore, constitutes a proof. The last line
of the new sequence is, therefore, a theorem, the dual of the original
theorem. Accepting the fact that every theorem of the algebra of sets
is deducible from 1---5 and 1'--5', we then obtain the principle of duality
for the algebra of sets: If 7' is any theorem expressed in terms of U, 1,
and , then the dual of T is also a theorem. This implies, for instance,
that if the unprimed formulas in the next theorem are deduced solely
from Theorem 5.1, then the primed formulas follow by duality. The
reader should convince himself that all the assertions in 't'heorem 5.2
are true by using the definitions of U, fl, and in terms of the member-
ship relation. Further, lie might try to deduce some of them solely from
Theorem 5.1-that is, without appealing in any way to the membership
relation. Some demonstrations of this nature appear in the proof of
Theorem 6.2.1. t

TIIEOREM 5.2. For all subsets A and B of a set U, the following
statements are valid. here A is an abbreviation for U - A.

6. If, for all A, A U B = A, 6'. If, for all A,Al II=A,then
then B = 0. B = If.

7, 7'. If A U B = U and A flB= 0, then B
8, 8'. A=A.

9. = U. 9'. I> _ 0.
10. AUA=A. 10'. Af1A=A.
11. A U U U. 11'. A fl 0 0.
12. A U (A n B) = A. 12'. 'A fl (A U B) = A.
13. AU11=Afl). 13'. Af1B=AU13.

Some of the identities in Theorem 5.2 have well-established names.
For example, 10 and 10' are the idempotent laws, 12 and 12' are the

t To refer to a theorem, example, exercise, or section in the chapter in which it appears,
we use only the number by which it is identified in the text. When a reference is made to
one of these items in another chapter we prefix its identifying number with a numeral that
identifies the chapter. For instance, in Chapter t we shall refer to the third example in Sec-
tion 2 as Example 2.3 and in another chapter we shall refer to the same example as Lx-
ample 1.2.3.
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absorption laws, and 13 and 13' the DeMorgan laws. The identities
7, 7' and 8, 8' are each numbered twice to emphasize that each is un-
changed by the operation which converts it into its dual; such formulas
arc called self-dual. Note that 7, 7' asserts that each set has a unique
complement.

A remark about the form of time next theorem is in order. An asser-
tion of the form, "The statements R,, B2, . . , RA, arc equivalent to one
another," means "For all i and j, R; if R;," which, in turn, is the case
iff R, implies Rz implies R3, , Rk-t implies Rk, and Rk implies Rt. The
content of the theorem is that the inclusion relation for sets is definable
in terms of union as well as in terms of intersection.

THEOREM 5.3. The following statements about sets A and B are
equivalent to one another.

(1) Ac 11.
(II)AfB=A.

(11I) AU13=B.
Proof. (I) implies (11). Assume that A C B. Since, for all A and B,
A nB c A, it is sufficient to prove that A C A fl I3. But if x C A,
then x C B and, hence, x E A fl B. Hence A C A fl B.

(II) implies (III). Assume A fl B = A. Then

AUB=(AfIB)UB= (AUB)fl(I3UB)
_ (AU1.1) f113=B.

(1II) implies (1). Assume that A U B = B. Then this and the iden-
tity AcAUBimply AcB.
The principle of duality as formulated earlier does not apply directly

to expressions in which - or C_ appears. One can cope with subtrac-
lion by using the unabbreviated form, namely, A fl 73, for A - B.
Similarly, by virtue of 'Theorem 5.3, A C 13 may be replaced by
A fl B = A (or A U B = 13). Still better, since the dual of A fl 13 = A
is A U B = A, which is equivalent to A -D 13, the principle of duality
may be extended to include the case where the inclusion symbol is
present, by adding the provision that all inclusion signs be reversed.

EXAMPLES

5.1. With the aid of the identities now available a great variety of complex
expressions involving sets can be simplified, much as in elementary algebra. We
give three illustrations.
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(a) AfBUB=AU BUB U B.
(b) (An L3nC) U (A () B(l C) U IJUC

=I(AUA)nB()c]uRUC
=[Un13nC] UBnC

(BnC)UIIT C
U.

(c) (AnBnCn)U(Anc)U(inc)U(CnX)
(An BnCnx)U [(AU 13UX) nC]

=
Unc

= C.

5.2. There is a theory of equations for the algebra of sets, and it differs con-
siderably from that encountered in high school algebra. As an illustration we
shall discuss a method for solving a single equation in one "unknown." Such
an equation may be described as one formed using (l, U, and on symbols
A,) A2, . , A,,, and A', where the A's denote (fixed subsets of some universal set
11 and X denotes a subset of U which is constrained only by the equation in
which it appears. Using the algebra of sets, the problem is to determine under
what conditions such an equation has a solution and then, assuming these arc
satisfied, to obtain all solutions. A recipe for this follows; the proof required in
each step is left as an exercise (see Exercise 5.7).

Step 1. Two sets are equal iff their symmetric difference is equal to 0.
Hence, all equation in X is equivalent to one whose righthand side is 0.

Step If. An equation in X with righthand side 0 is equivalent to one of
the form

(AfX)U(Bn1) =0,
where A and 13 are free of X.

Step Ill. The union of two sets is equal to Qf iff each set is equal to 0.
I lence, the equation in Step II is equivalent to the pair of simultaneous equa-
tions

AnX=0, Bnx=0.
Step IV. The above pair of equations, and hence the original equation,

has a solution iff 13 C_ A. In this event, any A', such that B C X C A, is it
soluctioti.

We illustrate the foregoing by deriving necessary and sufficient conditions
that the following equation have a solution:

X U C = 1),
[(.1 UC)nT]U[vn(,1UG)j-0, (Step I)
[(XUC)nl)]U[Dn xncj= 0,

(,1'n_ID)U(cnT))U(D nTnC)=0,
(Dnx)U[(CnD)n(XUx)]U(UnCnx) =0.
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(The introduction of X U X in the preceding equation is discussed in Ex-
ercise 5.7.)

(13nX)U(CnTnX)U(cnDnT)U(DnEn T) = 0,
{[DU(Cnl))]nX}U{[(Cn75)U(DfC)Inxi =0,

(D n X) U [(C + 1)) n xi = 0, (Step II)
7)fX=0and (C+D)fX=0. (Step 111)

Thus, the original equation has a solution ill

C + 1) C D. (Step IV)

It is left as an exercise to show that this condition simplifies to C G D.

EXERCISES
5.1. Prove that parts 3', 4', and 5' of Theorem 5.1 are identities.
5.2. Prove the unprimed parts of Theorem 5.2 using the membership rela-

tion. Try to prove the same results using only Theorem 5.1. In at least one such
proof write out the dual of each step to demonstrate that a proof of the dual
results.

5.3. Using only the identities in Theorems 5.1 and 5.2, show that each of the
following equations is an identity.

(a) (AnBfX)U(Af BnCfXfY)U(AnXnA)
=AfBnX.

(b) (A n RnC)U (1nBnC)UPUC= U.
(c) (AntinCn )u(AnC)u(7nc)u(CnX)=C.
(d) [(Af B)U(AnC)U(AnXnY)]

n[(Ar) 1nc)U(Ai1X(1Y)u(AnBnY)]
(AfB)Uc! nli'nXnY).

5.4. Rework Exercise 4.9(b), using solely the algebra of sets developed in
this section.

5.5. Let A,, A2, , A. be sets, and define Sk to be A, U A2 U U At for
A = 1, 2, , n. Show that

(3,=

is a disjoint collection of sets and that

U(A.-S,._,).
When is (i a partition of S,?

5.6. Prove that for arbitrary sets A,, A2, , 2),

A,UA2U...UA,.=(A,-A2)U(A2-A3)U...U(A.A.)
U (A - A,) U (A, n A2 n ... n AA).

5.7. Referring to Example 5.2, prove the following.
(a) For all sets A and B, A = B ifi' A + B = 0.
(b) An equation in X with righthand member 0 can be reduced to one of-
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the form (An x) U (B n X) = 0. (Suggestion: Sketch a proof along
these lines. First, apply the DeMorgan laws until only complements of*
individual sets appear. Then expand the resulting lefthancl side by the
distributive law 3 so as to transform it into the union of several terms T,,
each of which is an intersection of several individual sets. Next, if in any
T, neither X nor Y appears, replace T, by 7, n (X U X) and expand.
Finally, group together the terms containing X and those containing 7i'
and apply the distributive law 3'.)

(c) For all sets AandB,A=B=0iff'AUB=0.
(d) The equation (A n x) U (I3 n Y) = 0 has a solution if 11 C A1, and

then any X such that B C X C A is a solution.
(e) An alternative form for solutions of the equation in part (d) is X =

(B U T) fl A, where 1' is an arbitrary set.
5.8. Show that for arbitrary sets A, B, C, 1), and A,

(a)
[(A n X) U n U n X)J

= [(AUC)nxiu[(BUD)nXJ,
(c) [(An X)U(I3nA)Jn[(Cn AA)U(nnX)i

I(Af-C)fX]UI(BnD)nXJ.
5.9. Using the results in Exercises 5.7 and 5.8, prove that the equation

(AnX)u(ItnX)= (CnX)u(I)nA)
has a solution iff B -1- I) C A -}- C. In this event determine all solutions.

6. Relations

In mathematics the word "relation" is used in the sense of relation-
ship. The following partial sentences (or predicates) are examples of
relations:

is less than, is included in,
divides, is a member of,
is congruent to, is the mother of.

In this section the concept of a relation will be developed within the
framework of set theory. The motivation for the forthcoming definition
is this: A (binary) relation is used in connection with pairs of objects
considered in a definite order. Further, a relation is concerned with
the existence or nonexistence of sonic type of bond between certain
ordered pairs. We infer that a relation provides a criterion for dis-
tinguishing some ordered pairs from others in the following sense. 11'a
list of all ordered pairs for which the relation is pertinent is available,
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then with each may be associated "yes" or "no" to indicate that a
pair is or is not in the given relation. Clearly, the sane end is achieved
by listing exactly all those pairs which are in the given relation. Such
a list characterizes the relation. Thus the stage is set for defining a
relation as a set of ordered pairs, and this is done as soon as the notion
of an ordered pair is made precise.

Intuitively, an ordered pair is simply an entity consisting of two
objects in a specified order. As the notion is used in mathematics, one
relies on ordered pairs to have two properties: (i) given any two objects,
x and y, there exists an object, which might be denoted by (x, y) and
called the ordered pair of x and y, that is uniquely determined by x
and y; (ii) if (x, y) and (u, v) are two ordered pairs, then (x, y) = (u, v) itT
x = it and y = v. Now it is possible to define an object, indeed, a set,
which has these properties: the ordered pair of x and y, symbolized by

(x) y),
is the set

I {x}, {x, y} },

that is, the two-clement set one of whose members, {x, y), is the un-
ordered pair involved, and the other, {x}, determines which member
of this unordered pair is to be considered as being "first." We shall now
prove that, as defined, ordered pairs have the properties mentioned
above.

THEOREM 6.1. The ordered pair of x and y is uniquely detcr-
rnined by x and y. Moreover, if (x, y) = (u, v), then x = u and y = v.
Proof. That x and y uniquely determine (x, y) follows from our
assumption that a set is uniquely determined by its members. Turn-
ing to the more profound part of the proof, let us assume that (x, y)
(u, v). We consider two cases.

(1) it = v. Then (u, v) = { {u}, {,,, v} { Jul }. Ihcn('e { {.x}, {x,y} }
= { {u} }, which implies that {x} _ {x, y) _ {u} and, in turn,
that x=it and y=v.

(II) n p`- v. Then {u} 5,4- {u, v} and {x} {u, v}. Since {x} C { {u},
{u, v) }, it follows that {x} = Jul arid, hence, x = u. Since
{u,,)} C fix), {x, y} } and {u, v} - {x}, we have {u, v} =
{x, y}. Thus, {x} 76 (x, y), so, in turn, x F y and y 0 it.
I y = v.

We call x the first coordinate and y the second coordinate of the
ordered pair (x, y). Ordered triples and, in general, ordered n-tuplcs
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may be defined in terms of ordered pairs. The ordered triple of x, y,
and z, symbolized by (x, y, z), is defined to be the ordered pair ((x, y), z).
Assuming that ordered (n - 1)-tuplcs have been defined, we take the
ordered n-tuple of x,, x2, , x,,, symbolized by (x,, x2, , xn), to be
((x,, x2, ... , xn-1), xn)

We return to our principal topic by defining a binary relation as a
set of ordered pairs, that is, a set each of whose members is an ordered
pair. If p is a relation, we write (x, y) C p and xpy interchangeably, and
we say that x is p-related to y iff xpy. There are established symbols for
various relations such as equality, membership, inclusion, congruence.
Such familiar notation as x = y, x < y, and x = y is the origin of xpy
as a substitute for "(x, y) C p."

A natural generalization of a binary relation is that of an n-ary rela-
tion as a set of ordered n-tuplcs. The case n = 2 is, of course, the one for
which we have agreed on the name "binary relation." Similarly, in
place of 3-ary relation we shall say ternary relation.

EXAMPLES
6.1. {(2, 4), (7, 3), (3, 3), (2, 1)) as a set of ordered pairs is a binary relation.

'1'hc fact that it appears to have no particular significance suggests that it is not
worthwhile assigning a name to.

6.2. The relation "less than" for integers is {(x, y)I for integers x and y, there
is a positive integer z for which x + z = y}. Symbolizing this relation in the
traditional way, the statements "2 < 5" and "(2, 5) C <" are synonymous
(and true).

6.3. If i symbolizes the relation of motherhood, then (,Jane,.John) C µ
means that .Jane is the mother of John.

6.4. Human parenthood is an example of a ternary relation. If it is sym-
bolized by p, then (Elizabeth, Philip, Charles) C p indicates that Elizabeth and
I'hilip are the parents of Charles. Addition in Z is another ternary relation;
writing "5 == 2 -I- 3" may be considered as an alternative to asserting that
(2, 3, 5) C -f-

6.5. The cube root relation for real numbers is ((x113,x)I x C R). One mcm-
ber of this relation is (2, 8).

6.6. In trigonometry the sine function is defined by way of a rule for associ-
ating with each real number a real number between - I and 1. In practical
applications one relics on a table in a handbook for values of this function for
various arguments. Such a table is simply a compact way of displaying a set of
ordered pairs. Thus, for practical purposes, the sine function is defined by the
set of ordered pairs exhibited in a table (together with a rule concerning the
extension of the table). We note that as such a table is designed to be read it



26 Sets and Relations I CHAP. 1

presents pairs of the form (x, sin x); thereby the coordinates are interchanged

from the order in which we have been writing them for relations in general.

That is, for an arbitrary relation p we have interpreted (a, b) C p as meaning

that a is p-related to b, whereas the presence of (7r/2, 1) in a table for the sine

function is intended to convey the information that the second coordinate is
sine-related (is the sine of) the first coordinate.

Later we shall find extensive applications for ternary relations, but
our present interest is in binary relations, which we shall abbreviate to
simply "relations" if no confusion can result. If p is a relation, then the
domain of p, symbolized by D, is

{xl for some y, (x, y) E p

and the range of p, symbolized by R, is
{yj for some x, (x, y) E p1.

That is, the domain of p is the set whose members are the first coordi-
nates of members of p, and the range of p is the set whose members are
the second coordinates of members of p. For example, the domain and
range of the inclusion relation for subsets of a set If are each equal to
a'(U). Again, the domain of the relation of motherhood is the set of all
mothers, and the range is the set of all people.

One of the simplest types of relations is the set of all pairs (x, y), such
that x is a member of some fixed set X and y is a member of some fixed
set Y. This relation is the cartesian product, X X Y, of X and Y. Thus,

XX Y= {(x,y)jxCXandyC Y}.
It is evident that a relation p is a subset of any Cartesian product X X Y,
such that X ? 1), and Y Q R. If p is a relation and p C X X Y, then
p is referred to as a relation from X to Y. If p is a relation from X to
Y arrd2 _> X U Y, then p is a relation from 2 to L. A relation from
L tot, will be called a relation in L. Such terminologies as "a rela-
tion from X to Y" and "a relation in Z" stem from the possible applica-
tion of a relation to distinguish certain ordered pairs of objects from
others. If X is a set, then X X X is a relation in X which we shall call
the universal relation in X; this is a suggestive name, since, for each
pair x, y of elements in X, we have x(X X X)y. At the other extreme is
the void relation in X, consisting of the empty set. Intermediate is the
identity relation in X, symbolized by t. or tx, which is {(x, x)lx C X}.
For x, y in X, clearly, xtxy if x = y.

If p is a relation and A is a set, then p[A] is defined by
p[A] = {yj forsome xinA,xpy}.
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This set is suggestively called the set of p-relatives of elements of A.
Clearly, p [Do J = R and, if A is any set, p [A 19 R.

EXAMPLES
6.7. If Y 0 0, then Dxxy = X, and if X 0 0, then Rxxr = Y.
6.8. The basis for plane analytic geometry is the assumption that the points

of the Euclidean plane can be paired with the members of It X R, the set of
ordered pairs of real numbers. Thereby the study of plane geometric configura-
tions may be replaced by that of subsets of R X K, that is, relations in R. For
geometric configurations which are likely to be of interest, one can anticipate
that the defining property of the associated relation in R will be an algebraic
equation in x and y, or an inequality involving x and y, or some combination
of equations and inequalities. In this event it is standard practice to take the
defining property of the relation associated with a configuration as a description
of the configuration and omit any explicit mention of the relation. For example,
"the line with equation y = 2x + 1" is shorthand for "the set of points which
are associated with {(x, y) C R X Rly = 2x + 1)." Again, "the region
defined by y < x" is intended to refer to the set of points associated with
{(x, y) C R X R{y < x}. As a further example,

x <0andy> Dandy <2x-1-1
serves as a definition of a triangle-shaped region in the plane, as the reader can
verify.

If relations in It, instead of sets of points in the plane, are the primary objects
of study, then the set of points corresponding to the members of a relation is
called the graph of the relation (or of the defining property of the relation).
Below appear four relations, and above each is sketched its graph. When the
graph includes a region of the plane, this is indicated by shading.

y y

x

{(x,y)CRXRly=.r} {(x,y)CRXRIy>_x}
Figure 7 Figure 8
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y

((x,y)CRxRIO<x<2or
0<y<1)

Figure 9
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x

{(x,y)CRxRIO<x<2and
0<y<1)
Figure 10

If p is the relation in R with 0 < x < 2 as defining property and o is the
relation in B. with 0 < y < I as defining property, then the relation accompany-
ing Figure 9 is equal to p U cr, and the relation accompanying Figure 10 is
p n a. 'T'hus, Figures 9 and 10 illustrate the remarks that the graph of the union
of two relations, p and o, is the union of the graph of p and the graph of o, and
the graph of p n o is the intersection of the graphs of p and o.

6.9. Let p be the relation "is the father of." If A is the set of all men now living
in the United States, then p[A] is the set of all people whose fathers now live in
the United States. If A = (Adam, Eve), then p[A] = (Cain, Abel).

EXERCISES
6.1. Show that if (x, y, z) _ (zt, v, zu), then x = u, y - a, and z = w.
6.2. Write the members of 11, 21 X (2, 3, 4). What are the domain and

range of this relation? What is its graph?
6.3. State the domain and the range of each of the following relations, and

then draw its graph.
(a) {(x,y)CRXRIx2+4y2= 1}.
(b)
(c) {(x,y)CRXRI IxI+21yj= 1}.
(d) {(x,y)CR XRIx2+y2 <1 and x> 01.
(e) {(x,y)CRxB.Iy> Oandy <xandx+y < 1},
6.4. Write the relation in Exercise 6.3(c) as the union of four relations and

that in Exercise 6.3(e) as the intersection of three relations.
6.5. The formation of the cartesian product of two sets is a binary operation

for sets. Show by examples that this operation is neither commutative nor
associative.

6.6. Let Q be the relation "is a brbther of," and let o be the relation "is a
sister of." Describe 0 U a,,# n o, and 6 - o.
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6.7. Let a and v have the same meaning as in Exercise G.G. Let A be the set
of students now in the reader's school. What is /3[A]? What is (0 U (r)[A]?

6.8. Prove that if A, B, C, and D are sets, then (.l fl B) X (C fl D)
(A X C) n (B X D). Deduce that the cartesian multiplication of sets dis-
tributes over the operation of intersection, that is, that (A fl B) X C =
(AXC)f1(BXC) and AX(BfC)=(AXB)fl(AXC) for all A, B,
and C.

6.9. Exhibit four sets A, B, C, and 1.) for which (A U B) X (C U D) 5A
(A X C) U (B X D).

6.10. In spite of the result in the preceding exercise, Cartesian multiplication
distributes over the operation of union. Prove this.

6.11. Investigate whether union and intersection distribute over cartesian
multiplication.

6.12. Prove that if A, B, and C are sets such that A 5-' 0, 13 0, and
(AXB)U(BXA)=CXC,then A- 13=C.

7. Equivalence Relations

A relation p in a set X is reflexive (in X) iff xpx for each x in X. II no
set X is specified, we assume that X = Dp U R. A relation p is symmetric
if xpy iinpliesypx, and it is transitive iff xpy acrd ypz imply xpz. Relations
having these three properties occur so frequently in rnatheutatics they
have acquired a narrre. A relation p in X is an equivalence relation
(in X) if p is reflexive (in X), symmetric, and transitive. If a relation p
in X is an equivalence relation in X, then Dp = X. Because of this we
shall henceforth use the terminology "an equivalence relation on X" in
place of "an equivalence relation in X."

EXAMPLES
Each of the following relations is an equivalence relation on the accompany-

ing set.
7.1. Equality in a collection of sets.
7.2. The geometric notion of similarity in the set of all triangles of the

Euclidean plane.
7.3. The relation of congruence modulo it in Z. This relation is defined for

a nonzero integer n as follows: x is congruent to y, symbolized x - y(mod n),
if n divides x - y.

7.4. The relation c\) in the set of all ordered pairs of positive integers where
(x, y) cv (u, v) iff xv = yu.

7.5. The relation of parallelism in the set of lines in the Euclidean plane.
7.6. The relation of having the same number of members in a collection of

finite sets.
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7.7. The relation of "living in the same house" in the set of people of the
United States.

The last example above illustrates, in familiar terms, the central
feature of any equivalence relation: It divides the population into
disjoint subsets, in this case the sets of people who live in the same
house. Let us establish our contention in general. If p is an equivalence
relation on the set X, then a subset A of X is an equivalence class
(p-equivalence class) if there is a member x of A such that A is equal
to the set of all y for which xpy. Thus, A is an equivalence class iff there
exists an x in X such that A = p[(x[ 1. If there is no ambiguity about
the relation at hand, the set of all p-relatives of x in X will be abbrevi-
ated [x] and called the equivalence class generated by x. Two basic
properties of equivalence classes are the following.

(I) X E [xI.
(II) if xpy, then [x] _ (y].
The first is a consequence of the reflexivity of an equivalence rela-

tion. To prove the second, assume that xpy. Then [yj C [x] since z E [y]
(which means that ypz) together with xpy and the transitivity of p yield
xpz or z C [x]. The symmetry of p may be used to conclude the reverse
inclusion, and the equality of [x] and [y] follows.

Now property (I) implies that each member of X is a member of an
equivalence class, and (II) implies that two equivalence classes are
either disjoint or equal since if z E [xl and z C [y], then [x] = [z],
[yI = [z], and hence [x] = [yl. Recalling the definition of a partition
of a nonempty set, we conclude that the collection of distinct p-equiv-
alence classes is a partition of X. This proves the first assertion in the
following theorem.

THEOREM 7.1. Let p be an equivalence relation on X. Then the
collection of distinct p-equivalence classes is a partition of X. Con-
versely, if 6' is a partition of X, and a relation p is defined by apb if
there exists A in 6' such that a, b C A, then p is an equivalence rela-
tion on X. Moreover, if an equivalence relation p determines the
partition (P of X, then the equivalence relation defined by 6' is equal
to p. Conversely, if a partition 6' of X determines the equivalence
relation p, then the partition of X defined by p is equal to 6'.

Proof. To prove the second statement, let (P be a partition of X.
The relation p which is proposed is symmetric from its definition.
If a C X, there exists A in CP with a C A, so that p is reflexive. To
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show the transitivity of p, assume that apb and bpc. Then there exists
A in 6' with a, b C A, and there exists B in 6' with b, c C B. Since
b C A and b E. B, A = B. Hence apc.

To prove the next assertion, assume that an equivalence relation
p on X is given, that it determines the partition 6' of X and, finally,
that 6' determines the equivalence relation p*. We show that p = p*.
Assume that (x, y) C p. Then x, y C [xI and [x] C 6'. By virtue of the
definition of p* it follows that xp*y or (x, y) C p*. Conversely, given
(x, y) C p*, there exists A in 6' with x, y C A. But A is a p-equivalence
class, and hence xpy or (x, y) C p. Thus, p = p*.

The last part of the theorem is left as an exercise.

To illustrate part of the above theorem let us examine the equiva-
lence relation of congruence modulo n on `_Z which was defined in Ex-
ample 7.3. An equivalence class consists of all numbers a + kit with k
in Z. Clearly, therefore, [0], 111, , [n - I ] are distinct classes. 'T'here
are no others, since any integer a can be written in the form a = qn A- r,
0 < r < n, and hence a C [r]. A class of congruent numbers is often
called a residue class modulo n. The collection of residue classes modulo
n will be denoted by Z,.. We can use this example to emphasize the fact
that, for any equivalence relation p, an equivalence class is defined by
any one of its members, since if xpy, then [x] = [y]. Thus, [0 ] _ [n I =
[2n], and so on, and [1 ] = [n + 11 _ [1 - n], and so on.

If p is an equivalence relation on X, we shall denote the partition of
X induced by p by X/p (read "X modulo p") and call it the quotient
set of X by p. The significance of the partition of a set X accompanying
an arbitrary equivalence relation p on X is best realized by comparing
p with the extreme equivalence relation on X of identity. We classify
identity on X as an extreme equivalence relation because the only ele-
ment equal to a given element is itself. That is, the partition of X deter-
mined by identity is the finest possible-the equivalence class generated
by x consists of x alone. In contrast, for two elements to be p-equivalent
they Must merely have a single likeness in common, namely, that char-
acterized by p. A p-equivalence class consists of all elements of X which
are indiscernible with respect to p. That is, an arbitrary equivalence
relation on X defines a generalized form of equality on X. On turning
from the elements of X to the p-equivalence classes we have the effect
of identifying any two elements which are p-equivalent. If p happens
to preserve various structural features of X (assuming it has such), these
may appear in simplified form in X/p because of the identification of
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elements which accompanies the transition to X/p. Examples of this
arise quite naturally later.

Among the applications of equivalence relations in mathematics is
that of formalizing mathematical notions or, as one often says, forrnu-
lating definitions by abstraction. The essence of this technique is defining
a notion as the set of all objects which one intends to have qualify for
the notion. This seems incestuous on the surface, but in practice it serves
very nicely. For example, let us consider the problem of defining the
positive rational numbers in terms of the positive integers. Instead of
defining ratios of integers directly we introduce the notion of pairs of
integers having equal ratios by the definition (x, y) N (u, v) if xv = yu.
This is an equivalence relation on _L+ X Z"{-, and we-can now define a
rational number as an equivalence class. That is, the notion of equiv-
alence of pairs of integers amounts to imposing a criteria for indiscern-
ibility on "L_f- X Z+. Since this is an equivalence relation, a partition of
the universe of discourse is at hand, and in an equivalence class we have
the abstraction of the property common to all of its members. Thus we
define a rational number to be such an equivalence class. The familiar
symbol x/y emerges as an abbreviation for the equivalence class [(x, y)].
That an equivalence class is defined by each of its members implies that
any other symbol u/v, where (u, v) C [(x, y) ], may be taken as a name
for the same rational number. For example, the statement 2/3 = 4/6 is
true because 2/3 and 4/6 are merely different names for the same ra-
tional number.

Another instance of definition by abstraction is that of direction based
on the equivalence relation of parallelism: a direction is an equivalence
class of parallel rays. The notion of shape may be conceived in a like
fashion: geometric similarity is an equivalence relation on the set of
figures in the Euclidean plane, and a shape may be defined as an equiv-
alence class under similarity.

So far, the fundamental result concerning an equivalence relation p-
that the collection of all distinct p-equivalence classes is disjoint and xpy
if x and y are members of the sanic equivalence class-has been em-
ployed solely in connection with applications of equivalence relations.
It can also be made the basis of a characterization of equivalence rela-
tions among relations in general. This is clone next.

THEOREM 7.2. A relation p is an equivalence relation if there
exists a disjoint collection 41 of nonempty sets such that

p = { (x, y)l for some C in P, (x, y) C C X C).
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Proof. Assume that p is an equivalence relation on X. Then the
collection of distinct p-equivalence classes is disjoint, and we contend
that with this choice for (P, p has the structure described in the theo-
rem. We show first that { (x, y) I for some C in (P, (x, y) C C X C) C p.
Assume that (x, y) is a member of the set on the left side of the inclu-
sion sign. Then there exists an equivalence class [z] with x, y E [z].
Then zpx and zpy, and hence xpy, which means that (x, y) C p. To
show the reverse inclusion, assume that (x, y) C p. Then x, y C [x],
and hence (x, y) C [x] X [x].

The proof of the converse is straightforward and is left as an
exercise.

EXERCISES
7.1. If p is a relation in R', then its graph is a set of points in the first quad-

rant of a coordinate plane. What is the characteristic feature of such a graph if:
(a) p is reflexive, (b) p is symmetric, (c) p is transitive?

7.2. Using the results of Exercise 7.1, try to formulate a compact character-
ization of the graph of an equivalence relation on R+.

7.3. the collection of sets {{1, 3, 4}, (2, 7}, (5, 6}} is a partition of
11, 2, 3, 4, 5, 6, 7). Draw the graph of the accompanying equivalence relation.

7.4. Let p and v be equivalence relations. Prove that p f v is an equivalence
relation.

7.5. Let p be an equivalence relation on X and let Y be a set. Show that
P n (Y x Y) is an equivalence relation on X (1 Y.

7.6. Give an example of these relations.
(a) A relation which is reflexive and symmetric but not transitive.
(b) A relation which is reflexive and transitive but not symmetric.
(c) A relation which is symmetric and transitive but not reflexive in some set.
7.7. Complete the proof of Theorem 7.1.
7.8. Each equivalence relation on a set X defines a partition of X according

to Theorem 7.1. What equivalence yields the fittest partition? the coarsest
partition?

7.9. Complete the proof of "I'Ircorem 7.2.
7.10. Let p be a relation which is reflexive and transitive in the set A. For

a, b C A, define a N b if apb and bpa.
(a) Show that - is an equivalence relation on A.
(b) For [a], [b.l E Al-, define [a]p'[b] if apb. Show that this definition is

independent of a and b in the sense that if a' C [a], b' C [b], and apb,
then a'pb'.

(c) Show that p' is reflexive and transitive. Further, show that if [a]p'[b]
and [b]p'[a], then [a] = [b].

7.11. In the set Z+ X Z+ define (a, b) - (c, d) if a + d = h + c. Show that
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cu is an equivalence relation on this set. Indicate the graph of Z+ X Z_+, and
describe the ca-equivalence classes.

8. Functions

It is possible to define the concept of function in terms of notions
already introduced. Such a definition is based on the common part of
the discussions about functions to be found in many elementary texts,
namely, the definition of the graph of a function as a set of ordered
pairs. Once it is recognized that there is no information about a function
which cannot be derived from its graph, there is no need to distinguish
between a function and its graph. As such, it is reasonable to base a
definition on just that feature of a set of ordered pairs which would
qualify it to be a graph of a. function. This we do by agreeing that a
function is a relation such that no two distinct members have the same
first coordinate. 't'hus, f is a function ifT it meets the following require-
ments.

(1) The members off are ordered pairs.
(II) If (x, y) and (x, z) are members of f, then y = z.

EXAMPLES
8.1. {(1, 2), (2, 2), (Roosevelt, Churchill)) is a function with domain

{1, 2, Roosevelt) and range (2, Churchill).
8.2. The relation {(1, 2), (1, 3), (2, 2)) is not a function, since the distinct

members (1, 2) and (1, 3) have the same first coordinate.
8.3. The relation {(x, x2 + x + 1)Jx E It} is a function, because if x = u,

then x2-l-x+1 = u2-- u-1-1.
8.4. The relation {(x2, x)Jx C It} is not a function, because both (1, 1) and

(1, -1) are members.

Synonyms for the word "function" are numerous and include trans-
formation, map or mapping, correspondence, and operator. If f is a
function and (x, y) E f, so that xfy, then x is an argument of f. There
is a great variety of terminology for y; for example, the value off at x,
the image of x under f, the element into which f carries x. There are
also various symbols for y: xf, f(x) (or, more simply, fx), xf. The nota-
tion "f(x)" is a name for the sole member off! {x} ], the set off-relatives
of x. In these terms the characteristic feature of a function among rela-
tions in general is that each member of the domain of a function has a
single relative.

The student must accustom himself to these various notations, since
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he will find that all are used. In this book definitions and theorems
pertaining to functions will consistently be phrased using the notation
f(x), or fx, for the (unique) correspondent of x in a function f. The
notation f[AJ for {yj for sonic x in A, (x, y) C f) is in harmony with this.
However, in applications of functions we shall use a variety of nota-
tions. When it is more convenient to use xf in place of f(x), then [All
will be used in place off [A]. If xf is used in place of f(x), then [A if or
Af will be used in place off [A I.

Since functions are sets, the definition of equality of functions is at
hand: Two functions f and g are equal if they have the same members.
It is clear that this may be rephrased f = g iff Df = Dv and f(x) = g(x)
for each x in the common domain. Consequently, a function may be
defined by specifying its domain and the value of the function at each
member of its domain. The second part of this type of definition is,
then, in the nature of a rule. For example, an alternative definition of
the function { (x, x2 + x -}- I )jx C R) is the function f with B. as domain
and such that f(x) = x1 + x + 1. When a function is defined by
specifying its domain and its value at each member of the domain,
the range of the function may not be evident. The above example
requires a computation to conclude that Rf = {x C RJx >

4
11 ). On

the other hand, it is almost obvious that Rf C R+-. In general, one can
anticipate difficulty in determining the range, but no difficulty in
determining some set that includes the range. Thus, it is convenient
to have available the following terminology. A function f is into Y if
the range of f is a subset of Y, and f is onto Y if Rf = Y. For corre-
sponding notation for the domain of a function we shall say that f is
on X when the domain off is X. The symbols

f: X-*- Y and X-f3.- Y

are commonly used to signify that f is a function on the set X into the
set Y.

The set of all functions on X into Y, symbolized

YX,

is a subset of 61(X X Y). If X is empty, then YX consists of only one
member-the empty subset of X X Y. This is the only subset of X X Y,
since when X is empty so is X X Y. If Y is empty and X is nonempty,
then Yx is empty. In summary,

Yo = 101
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Ox=0 if X 0.
If f : X -+ Y, and if A C X, then f n (A X Y) is a function on A into

Y (called the restriction of f to A and abbreviated fIA). Explicitly,
f JA is the function on A such that (f lA) (a) = J(a) for a in A. A function
g is the restriction of a function f to some subset of the domain off iff
the domain of g is a subset of the domain of f and g(x) = f(x) for
x C D,,; in other words, g C f. Complementary to the definition of a
restriction, the function f is an extension of a function g iff g C f. In
order to present an example of the notion of a restriction of a function
we recall the earlier definition of the identity relation tx in X. Clearly,
this relation is a function, and hence, in keeping with our current
designation of function by lower-case English letters, we shall designate
it by i or ix. We shall call ix the identity map on X. If A C X, then
ixI A = in If ixJA is considered as a function on A into X, then it is
the injection mapping on A into X.

A function is called one-to-one if it maps distinct elements onto dis-
tinct elements. That is, a function f is one-to-one if

xr ; x2 implies f (XI) 0 f (x2) .

In demonstrating one-to-oneness it may prove to be more convenient
to use the contrapositive of the foregoing:

f(XI) = f(x2) implies x1 = x2.

For example, the function f on R such that J(x) = 2x + I is one-to-one
since 2xr + 1 = 2x2 -I- I implies xr = x2.

If f is a one-to-one function on X onto Y or, somewhat less awk-
wardly, if f : X --} Y is one-to-one and onto, then it effects a pairing of
the elements of X with those of Y upon matching f (x) in Y with x in
X. Indeed, since f is a function, f(x) is a uniquely determined element
of Y; since f is onto Y, each y in Y is matched with some x; and since
f is one-to-one, each y is matched with only one x. Because of the
symmetrical situation that a one-to-one map on X onto Y portrays, it
is often called a one-to-one correspondence between X and Y. Also,
two sets so related by some function are said to l)c in one-to-one
correspondence.

EXAMPLES
8.5. The familiar exponential function is a function on R into R, symbolized

f : R -+- ] with f(x) = eE.
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We can also say, more precisely, that f is a function on R. onto R{. In general,
if J: X -} Y, then f is a function on X onto f [X], that is, onto the range of f.

B.G. {a, b, c} (r. 2) is the set of all functions on (1, 2) into (a, b, c}. One mem-
ber of this set is {(1, a), (2, c)).

8.7. If A and B are sets having the same number of elements, they clearly
are in one-to-one correspondence. Then it is an easy matter to show that for
any set X, Ax and Bx are in one-to-one correspondence. This being the case,
it is customary to denote the set of all functions on X into any set of n elements
by nx. Thus, 2x denotes the set of all functions on X into a set of two elements,
which we will ordinarily take to be (0, 11. If A C X, then one member of 2X
is the function XA defined as

XA(x) = I if x C A, and XA(x) = 0 if x C X - A.

We call XA the characteristic function of A. Now let us define a function f on
6'(X) into 2x by taking as the image of a subset A of X [that is, a member of
6'(X)] the characteristic function of A (which is a member of 2x). It is left as
an exercise to prove that f is a one-to-one correspondence between (P(X) and 2x.
It is customary to regard (P(X) and 2x as identified by virtue of this one-to-one
correspondence, that is, to feel free to replace one set by the other when it is
convenient.

8.8. If f is a function and A and B are sets, then it can be proved that
f[A U B] = J[A] U f[B] and that J[A n B] s f[.A] n f[B]. The inclusion
relation in the case of A n B cannot be strengthened.

In elementary mathematics one has occasion to use functions of sev-
eral variables. Within the frhrncwork of our discussion a function of n
variables (n > 2) is simply a function whose arguments are ordered
n-tuplcs. We can include the case it = 1 if we agree that a I-tuplc,
(x), is simply x. Introducing the notation X" for the set of all n-tuplcs
(x,, x2, , x"), where each x is a member of the set X, a function,
whose domain is X" and whose range is included in X, is an n-ary
operation in X. In place of "l-ary" we shall say "urrary"; for ex-
ample, complementation is a unary operation in a power set. In place
of "2-ary" we shall say "binary." This was anticipated in our discussion
of operations for sets; for example, into rsection is a binary operation
in a suitable collection of sets. Also, addition in Z is a binary operation;
if x, y C Z, the value of this function at (x, y) is written x + y.

EXERCISES

8.1. Give an example of a function on R onto Z.
8.2. Show that if A C X, then ixIA = iA.
8.3. If X and Y arc sets of n and n: elements, respectively, Yx has how many

elements? How many members of 6'(X X Y) are functions?
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8.4. Using only mappings of the form f: Z.t --'- Z4', give an example of a
function which

(a) is one-to-one but not onto;
(b) is onto but not one-to-one.
9.5. Let A = {1, 2, , n). Prove that if a map f: A -3- A is onto, then it is

one-to-one, and that if a map g: A A is one-to-one, then it is onto.

8.6. Let f : R+ --} R, where f(x) = fy dl' Show as best you can that f is a

ne-to-one and onto function.o
8.7. Prove that the function f defined in Example 8.7 is a one-to-one corre-

spondence between W(X) and 2x.
8.8. Referring to Example 8.8, prove that if f is a function and A and B are

sets, then f[A U B] = f[A] U f[B].
8.9. Referring to the preceding exercise, prove further that J[A n B] C

J[A] n f [B], and show that proper inclusion can occur.
8.10. Prove that a function J is one-to-one if for all sets A and B, f[A fl B]

f[A] n ffB].
8.11. Prove that a function f : X -} Y is onto Y iff f [X - A] Q Y - f[A]

for all sets A.
8.12. Prove that a function f: X - )- Y is one-to-one and onto iff f [X - A]

Y - f [A] for all sets A.

9. Composition and Inversion for Functions

To motivate our next definition, we consider an example. Let the
functions f and g be defined as

f: R -4- B. with f(x) = 2x + 1,
g: RF-}Rf with g(x) = x1'2.

It is a familiar experience to derive from such a pair of functions a
function h for which h(x) = g(f(x)). Since the domain of g is Rt- by
definition, x trust be restricted to real numbers such that 2x + I > 0
for h(x) to be defined. That is, combining f and g in this way yields a
function whose domain is the set of real numbers greater than -1 and
whose value at x is g(J(x)) = (2x + 1)1/2

The basic idea of this example is incorporated in the following defi-
nition. By using ordered pair notation (instead of the domain and
value no(ation) for functions, we avoid having to make any restriction
stermning from a difference between the range off and the domain of
g. The composite of functions f and g, symbolized

g ° f,
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is the set
(x, z)l there is a y such that xfy and ygz 1.

It is left to the reader to prove that this relation is a function. This
operation for functions is called (functional) composition. The follow-
ing special case of our definition is worthy of note. If

f: X -}} andg:Y -i- Z,
then

g -f: X --3- /, and (g ° f)(x) = g(f(x))

The above example establishes the fact that functional composition
is not a commutative operation; indeed, rarely does f o g = g o f. how-
ever, composition is an associative operation. That is, if f, g, and h
are functions, then

f°(goh) = (fog)oh.
To prove this, assume that (x, u) C f o (g - It). 'T'hen there exists a z such
that (x, z) C g o h and (z, a) C f. Since (x, z) C g o h, there exists a y such
that (x, y) C h and (y, z) C g. Now (y, z) C g and (z, u) C f imply that
(y, u) C f - g. Further, (x, y) C It and (y, u) C f o g imply that (x, u) C
(f o g) o Is. Reversing the foregoing steps yields the reverse inclusion and
hence equality.

The foregoing proof will be less opaque to the reader if he rewrites
it in terms of function values. The proof given is in accordance with
our definition of functional composition and has the merit that it avoids
any complications arising from a difference between the range off and
the domain of g. From the associative law for composition follows the
general associative law, which the reader may formulate. The unique
function which is defined by composition from the functionsf,, fz, - - -, f,
in that order will be designated by

fl 'f2 0 ... 'J.-

EXAMPLES
9.1. Let h: It where h(x) _ (1 -l- x2)e2. Then /t = g - f if f : R

with f(x) = 1 -1 x2, and g: R+ -- R+ with g(x) = x'12. It is this decomposition
of /i which is used in computing its derivative.

9.2. A decomposition of an arbitrary function along somewhat different lines
than that suggested by the preceding example call be given in terms of concepts
we have discussed. First we make a definition. If p is an equivalence relation
with domain X, then

j: X -- X/p with j(x) = (A)
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is onto the quotient set X/p; j is called the canonical or natural mapping on
X onto X/p. Now, if f is a mapping on X into Y, the relation defined by

XJPX2 ifl'f(x,) = f(x2)

is clearly an equivalence relation on X. Let j be the canonical map on X onto
X/p. We contend that a function g on X/p into f[X], the range of f, is defined
by setting g([x]) = f(x). To prove that g is a function, it must be shown that if
[x] _ [Y] then f(x) = f(y). But [x] _ [y] if xpy if f(x) = f(y); so g is a func-
tion. Finally, we let i be the injection of f[X] into Y. Collectively, we have de-
fined three functions j, g, i where

j: X-' X/p with J(x) = [x],
g: X/p-} f[X] with g([x]) = I(x),
i: f[X] -} Y with i(y) = y.

Clearly, j is onto and i is one-to-one. It is left as an exercise to show that g is
one-to-one and onto and that

f=iog"1.
'I this equation is the whole point of the discussion. It proves to be a useful
decomposition for an arbitrary function f.

9.3. If f is a known function with domain X and with range a subset of Y,
then the notation f: X-- Y for f includes superfluous information. However,
it does suggest the consideration of f as a function that is associated with the
pair (X, Y) of sets X and Y. If g: Y-+ Z is likewise associated with (Y, Z), then
we associate the composite function g -f with (X, Z). The association of each
function f with a pair of sets X and Y, such that X is the domain of f and Y
includes the range of f and the agreement that the composite g e f of f : X --} Y
and g: W - Z may be formed only if W = Y, has certain merits. For example,
within this framework it is possible to characterize "onto" (along with "one-
to-one") as a property of functions. Further, it sets these forth as dual properties
in a sense that will be explained later.

The characterization of one-to-oneness that we can demonstrate is as follows.
(I) I.ct f : X -- Y. Then f is one-to-one ifT for all functions g and h such that

g: Z -- X and h: Z -} X, fog = f o h implies that g = h. Indeed, sup-
pose that f is one-to-one and that g and h are mappings on Z into X for
which f - g = f ^ h. Then f(g(z)) = f(h(z)) for all z in Z. With f one-
to-one it follows thatg(z) = h(z) for all z in Z. Hence, g = h. The proof
of the converse is left as an exercise.

A characterization of a function being "onto" can now be given by a simple
alteration of M.

(11) Let f : X -} Y. Then f is onto Y ifT for all functions g and h such that
g: Y -} 7 and h: 1' -} Z, g o f = h o f implies g = h. The proof is left
as an exercise.

With the above characterizations at our disposal the decomposition obtained
in Example 9.2 can be described more neatly as follows. For any function f
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there exists a function i which is one-to-one, a function j which is onto, and a
function g which is one-to-one and onto, such that f = i o g - j.

If the coordinates of each member of a function f (considered as a
set of ordered pairs) are interchanged, the result is a relation g which
may not be a function. Indeed, g is a function if (y, x) and (y, z) in g
imply that x = z. In terms of f this means that if (x, y) and (z, y) are
in f, then x = z, that is, f is one-to-one. If f is one-to-one, the function
resulting from f by interchanging the coordinates of members of f is
called the inverse function of f, symbolized

i

This operation, which is defined only for one-to-one functions, is called
(func(ional) inversion. If f_.., exists, then its domain is the range off, its
range is the domain of f, and x = `(y) if y = f(x). Further, f--' is

one-to-one and its inverse, is equal to f. If f is a one-to-one
function on X onto Y, then f' is a one-to-one function on Y onto X.
Moreover,

f-'of = ix, and fof-' = iv.
There is another important connection between composition and

inversion of functions. If f and g are both one-to-one functions, then
g o f is one-to-one, and

(g ° f) -' = f -' ° g--'.
The proof is left as an exercise.

EXAMPLES
9.4. The function f: R ->- R such that f(x) = 2x + 1 is one-to-one. The in-

verse off may be written {(2x -I- 1, x)Ix C R}. This is not very satisfying to one
who prefers to have a function defined in terms of its domain and its value at
each member of the domain. To satisfy this preference, we note that

{(2x -1- 1, x)Jx C I_l} = {(t, a(t - 1))ft C R}.
Thus ff' is the function on R into R such that f' '(x) = J(x - 1).

9.5. The function g: R'- 1Z} such that g(x) = x2 is one-to-one, since
xi = x22, and both x, and x2 positive imply that x, = x2. Then

g'': R-'' ---r R' where g-'(x) = x112.

9.6. The function
f : R -+ R'- where f (x) = 100

is known to be one-to-one and onto. The inverse function is called the logarithm
function to the base 10, and its value at x is written logo x. The equations
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log,o10,=x,forxCR,and10"' = x, forx>0,

are instances of equations (f ' o f)(x) = x, for x C D1, and (f of ')(x) = x,
for x C R1, which are true for any one-to-one function.

9.7. If the inverse of a function f in It exists, then the graph of f ' may be
obtained from that off by reflection in the line y = x. The proof is left as an

exercise.
9.8. From Example 8.8, if the inverse of a function f is defined, then

j '[A U B] = f '[A] U PI[B] and f '[A n B] c f '[A] o f '[B]. The latter
identity can be sharpened to f-'[A n B] = f-'[A] n f -'[B] for inverse func-
tions. The proof is left as an exercise. A set of the form f-'[A] we call the
inverse or counter image of A under f.

EXERCISES
9.1. Let J: R -+- R where f(x) = (1 - (1 - x)113)"5. Express f as the com-

posite of four functions, none of which is the identity function.
9.2. Iff:X --}Yand A X, show that/IA = f - iA.
9.3. Complete the proof of the assertions made in Example 9.2.
9.4. Complete the proof of (I) and supply a proof of (11) in Example 9.3.
9.5. Prove that f : A -+- B is a one-to-one correspondence between A and B if

there exists a map g: B -* A such that g e f = iA and f o g - iB.
9.6. Iff : A ->- B and g: B -'- C are both one-to-one and onto, show that

g -f: A -a- C is one-to-one and onto and that (g -f)-1 = f ' o g-1.
9.7. For a function f: A - A, fn is the standard abbreviation for f of o -f

with n occurrences of f. Suppose that fn = i4. Show that f is one-to-one and
onto.

9.8. Justify the following restatement of Theorem 7.1. Let X be a set. Then
there exists a one-to-one correspondence between the equivalence relations on
X and the partitions of X.

9.9. Prove that if the inverse of the function f in R exists, then the graph of
may be obtained from that off by a reflection iu the line y = x.

9.10. Show that each of the following functions has an inverse. Determine
the domain of each inverse and its value at each member of its domain. Fur-
ther, sketch the graph of each inverse.

(a) f: R -' B wheref(x) - 2x - 1.
(b) f : B. -' It where f (x) = x'r.
(c) f = {(x, (1 - x2)'/2)J0 < x 11}.

(d) f =l(x,x X. 1)I-2<x<1}.

9.11. Establish identity (g -f)-'J=f-' -g-1 for one-to-one functions f
and g.

9.12. Prove that if the inverse off exists, then f '[A n B] = f-'[A] n f"-'[B].
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9.13. The definition of the composite of two functions is applicable to any
pair of relations. With this in mind, show that if f is any function and g =
{(y, x)f (x, y) C f} then g o f is an equivalence relation.

9.14. Let A, B, A', and B' be sets such that A and A' are in one-to-one
correspondence and B and B' are in one-to-one correspondence. Show that

(a) there exists a one-to-one correspondence between A X B and A' X B';
(b) there exists a one-to-one correspondence between AB and A'B
(c) if, further, A fl B = 0 and A' n B' = 0, then there exists a one-to-

one correspondence between A U B and A' U If'.
9.15. For sets A, B, and C show that
(a) A X B is in one-to-one correspondence with B X A;
(b) (A X B) X C is in one-to-one correspondence with A X (B X C);
(c) A X (B U C) is in one-to-one correspondence with (A X B) U (A X C).
9.16. For sets A, B, and C show that
(a) (A X B)c is in one-to-one correspondence with Ac X Be;
(b) (AB)C is in one-to-one correspondence with Arrxc;
(c) if, further, B n C = 0, then ABuc' is in one-to-one correspondence with

As X A(,'.

10. Operations for Collections of Sets

In this section we generalize the binary operations of union, intersec-
tion, and Cartesian product.

Let (I, be a collection of sets. The union of (t is the set of all objects x
such that x belongs to at least one set of the collection ct. That is, it is

(xlx C X for some X in (t}.

This set is symbolized by

U(t or U(XIX E a,} or U,-,X.
The earlier definition of A U B is seen to be simply the union of (A, R}.
That is,

U(XIXE(A,B}}=AUB.
In Section 5, using the property of associativity of union as a binary
operation, we defined what is immediately seen to be in our present
terminology the union of a collection of the type {A,, A2, , We
shall continue to use the denotation A, U A2 U . U A. for this union.
From the viewpoint of set theory, it was a waste of space to have
introduced this extension. However, from the viewpoint of the algebra
of sets, it was not.
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EXAMPLES

10.1. UO=0.
10.2. U {A} = A.
10.3. If a _ ({1, 2}, {3, 4}}, then U(1. _ (1, 2, 3, 4}. Also, (P(CB)

{a., {(1, 2)}, {(3, 4) }, 0) and UP(a) = {{1, 21, {3, 4)) = Lt. It is left as
an exercise to show that U(P(a) - (% is an identity.

The intersection of a nonempty collection a of sets is the set of all
objects x such that x belongs to every set of the collections a. That is, it is

(xjxCXforallXina}.
This set is symbolized) by

na or n(XIXC a} or n.vcr,X.

Earlier, A n 13 was defined as the intersection of (A, 13}. That is,

n(xixc (A, 13}} = An B.
Further, the. earlier definition of A, n A2 n ... n A,, coincides with
what we may now call the intersection of the collection (At, A2, , A J.

The question of why the definition of the intersection of a collection
of sets has been restricted to nonempty collections deserves an answer.
if the defining property for the intersection is applied to the empty
collection, we have

no = (xjx C X for all X in o }.
It is left to the reader to convince himself that the defining property at
hand is satisfied by any object whatsoever. Clearly this is an unsatis-
factory situation. An alternative which may be offered is based upon the
assumption that there is a universal set U at hand. '1'lrcn the inter-
section of a collection 0, (of subsets of U) is defined to be

(x C Ulx C .I for all X in Ct}.

For a nonempty collection, the new definition agrees with the old. The
cliffercncc is the way in which they treat the empty collection; according
to the new definition,

n xcox = U,
which seems to be a more reasonable result.

Algebraic properties of unions and intersections will he presented in
terms of one of the standard notations for designating collections of sets.
In this notation, a collection of sets. appears as the range of a suitable
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function. To this end we introduce sorne definitions. Suppose that y is a
function on a set I into a set Y. Let us call an clement i of the domain I
an index, I itself an index set, the range of y an indexed set, and the
function y itself a family. We shall denote the value of y at i by yi and
call y, the ith coordinate of the family. Thereby, we may write

y= {(i, yi) C I X Vii C I}.
Actually, y is completely specified by { y4I i C 11 ; in this notation it is
the range of the function which is emphasized. In place of" (yi;i C 11,11
it is common practice to write "{y,} with i E I" or, if the domain is
clear from the context, simply "{yi}." Such notation has its origin in
that employed for sequences. By definition, a sequence is a family on
the set of positive (or, nonnegative) integers into a set Y. That is, a
sequence is a function for which {1, 2, - , n, } or 10, 1, , R, }
serves as an index set. Hereafter we shall denote the latter set by N.

By the phrase "a family (Ail of subsets of II" we shall understand a
function A on some set I of indices into o'(U). The union of the range of
such a family is called the union of the family (Ail or the union of the
sets A. The standard notation for it is

U {A4;i E I} or UiE1Ai or U,A

where the last denotation suggests that the index set need not be cmplia-
sized. For the ease of the union of a sequence { Ail i C Ni of sets A i, each
of the notations

U',--oAi and Ao U Ac U ... U A. U ...
is also used. Similarly, the union of (AI, A2, , is denoted by

U,'r;Ai or Ac U Az U U A,..

In every case it follows from the definition of unions that x E U;Ai iff__
x belongs to A, for at least one i.

If we agree to use the second of the definitions given above for the
intersection of a family {A, } of subsets of 11, the terminology and nota-
tion for intersections parallel those for unions in every respect. 'T'hus, the
intersection of the range of the family is called the intersection of the
family [Ail or the intersection of the sets A,. The standard notation for
this is

n {Aji E I} or ni,,Ai or n,Ai.

If the family is nonempty, that is, if I 31- 0, then x E niAi iff x is a
member of Ai for all i. If I = 0, then n,A, = U.
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Incidentally, it should be noted that there is no loss of generality in
considering families of sets in place of arbitrary collections. As the reader
can easily show, every collection of sets is the range of some family.

In the following theorem appear several algebraic properties of unions
and intersections of families; others appear among the exercises. These
generalize properties of the operations of the operations of union and
intersection for pairs. The reader may supply the proofs.

TI 11: 0 R F M 10.1. Let (A,) with i C I be a family of subsets of U
and let B C U. Then

(I) B n U,A1 = U,(B n A,) and Bu n;A; = n;(B U A,).
(II) U - U1A1 = n,(U - A,) and u- n,Ai = U,(U - A,).

(III) If J is a subset of I, then

U;c iAj C Ui(,Ai and niE-jAi Q 1 icrAi.

EXAMPLES
10.4. In spite of the emphasis which has been given to the interpretation of

a collection of sets as the range of some family, it should not be inferred that the
accompanying notation is indispensable for stating results like those in The-
orem 10.1. For example, the first distributive law in (1) may be stated for a
collection tt. of subsets of U as

B0 U(AIAE(t} =U{BnAIAE(t}
and the first of the DeMorgan laws in (II) as

U - U{AIAC(a} = n{U--AIAEt:I,}.
10.5. The following identities generalize those in Example 8.8. Iff is a func-

tion and {A,} is a family with nonempty domain I, then

f[U,A,I = U,ffAil and f[n,A,l = n,f[A,l.

Further, if f is one-to-one, then equality holds in the second identity (see Exer-
cise 8.10).

10.6. The following compact formulation of Theorem 7.2 is now possible: A
relation p is an equivalence relation ill' there exists a disjoint collection (3' of sets
such that p - tc X CIC E o'}.

We shall use the notion of a fancily to generalize the concept of the
cartesian product of two sets. For this we note that an eleirient (a,, a1) of
the cartesian product A, X A2 drones a family a with domain (1, 21
and whose values at 1 and 2 are a, C A, and a C A>, respectively. If A is
the set of all families having 11, 2) as domain and such that their value at
i is a member of A, for i = 1, 2, then the function f: A, X A2 --*- A,
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where f(a,, a2) = a as described above, is a one-to-one correspondence.
We take the existence of this one-to-one correspondence as the basis for
the assertion that the only difference between A, X A2 and A is a
notational one. As such, we shall henceforth not distinguish between
them. The generalization of A, X A2, with A, X A2 regarded as A, is an
easy matter. If (Ai} with i C I is a family of sets, then the cartesian
product of the family, in symbols

X { Aili C I } or XiE1Ai or XiA1,

is the set of all families a with domain I and such that ai C Ai for
each i in I.

For the cartesian product of a sequence {Aili C NJ of sets Ai, the
notation

X1+O Ai or AoXA,X ... XA.X ...
is used. Similarly, the cartesian product of (A,, A2, , is denoted
by

X;s,Ai or A, X A2 X X A,,.

As the latter symbolisni suggests, if I = (1, 2 }, we shall identify Xic,Ai
with A, X A2 as defined earlier and XieiAi with A, if I = (1 }. If every
member of the f'ainily (A, } with i C I is equal to the same set X, then
XiciAi = XI, the set of all functions on I into X. If I = (1, 2, . , n J,
then we identify Xi with X" as defined earlier. In particular, X' is taken
to be X.

We introduce one more bit of terminology for cartesian products.
Let (Ai) with i C I be a fairrily of sets and let A be its cartesian product.
If J is a subset of I, then there is a natural correspondence of the elements
of A with those of XicjAi. To formulate this explicitly, we use the fact
that an element a of A is a family {a,} with I as domain. Then the ele-
ment b, let us say, of Xic,Ai which is the natural correspondent of a is
the restriction of a to J. We shall write bi for a, when i C .1. The func-
tion on A whose value at a is b is called the projection on A onto XiErAi.
If J = I j } and p, is the projection on A onto A;, then p;(a) is called the
j-coordinate of a.

EXERCISES

10.1. Let p be a relation, that is, a set each of whose members is an ordered
pair. Show that p is a relation in UUp.

10.2. Show that ii' d is a collection of sets, then
(a) a = U(P((t), arid
(b) a P(Ua).
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Can the inequality in (b) be strengthened?
10.3. Supply proofs for the identities in 'T'heorem 10.1.
10.4. Let {l,} be a family of sets with domain J. Let I - U;I; and suppose

that {A,} is a family of sets with domain I. Prove the following associative laws.
(a) UjCjAi -
(I)) ni(-[Ai =
10.5. Prove each of the distributive laws,

(U,A1) n (Uilli) = Ui.i(Ai n B1)
and

(niAi) U (n,B,) = ni.;(Ai u B;).
Here it is to be understood that such a symbol as U,,; is an abbreviation
for Ulii>E_tx

10.6. (a) If A and B are sets and X is (A, B), prove that UX = {A, B},

nx = (A}, U(nx) = A, n(nx) = A, U(UX) = A U 13, and n(Ux) _
AnB.

(h) Suppose that it is known that the set .V is an ordered pair. Use the
results in (a) to recapture the first coordinate and the second coordinate of X.

10.7. Prove that (U,A1) X (UjB,) = Ui,,(A, X 13,), as well as a like result
for intersections.

10.8. Let {I,lj C .11 be a partition of the set 1. Determine a one-to-one corre-
spondence between X,EIA1 and

11. Ordering Relations

In this section we define several types of relations which have their
origin in the intuitive notion of an ordering relation (order of prec-
cdcncc), that is, a relation p such that for an appropriate set X there
are various distinct members x and y of X such that xpy, but it is not
the case that ypx. Then, by means of p, we could decide to put the x
and y in question in the order x, y rather than y, x because xpy, and it is
not the case that ypx. For a set of real numbers the familiar relations
<, <, and > are used in this capacity. For a collection of sets the
relations C and S serve similarly.

The first ordering relation we shall consider has as its defining prop-
erties the basic features common to the above relations of < for num-
bers and C for sets. We define a relation p as antisymmetric if whenever
xpy and ypx then x = y. A relation p in a set X is called a partial
ordering (in X) if p is reflexive (in X), antisyininetric, and transitive:
If no set X is specified we assume X = D, U Rp. For the consideration
of a partial ordering relation relative to various sets (for example, the
familiar ordering in _I relative to the set of even integers), it is convenient
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to make the further definition that a relation p partially orders a set
y itf p n (Y x Y) is a partial ordering in I'. The relation p f-1 (Y X Y)
is the "restriction" of p to Y in the sense that it is reduced by all ordered
pairs either of whose coordinates are not nicmbers of 1'.

EXAMPLES
11.1. The relation "is an integral multiple of" in Z{ is a partial ordering.
11.2. A hierarchy or a table of organization in a business fine is determined

by a partial ordering in some set of positions.
11.3. If p is a partial ordering in X, then p n (A X A) partially orders the

subset A of X.
11.4. If p is a relation, the converse of p, symbolized by j,, is the relation

such that yfix ifT xpy. If p is a partial ordering, then so is its converse.
11.5. A relation p that is reflexive and transitive is a. preordering. A poten-

tial shortcoming of such a relation, in connection with establishing an order of
precedence in a set X, is the possibility of p being "indifferent" to some distinct
pair x, y of objects in the. sense that both xpy and ypx. For example, in some
population let w be the weight function and h be the height function of in-
dividuals so that rv(x) and h(x) arc the weight and height, respectively, of the
individual named x. Then the relation p such that xpy if iv(x) < w(y) and
h(x) < Iz(y) is a preordering, but is not a partial ordering if there are two iri-
dividuals having the same weight and height.

If p is a preordering in X, then it determines a partial ordering in a partition
of X, according to Exercise 7.10. There it is asserted first that the relation cv
such that x cv y iffi xpy and ypx is an equivalence relation. Secondly, it is stated
that the relation p' such that [x] p' [_y] iff xpy is a partial ordering having the
accompanying set of equivalent classes [x] as domain. In summary, if p is a pre-
ordering in A, then it is a partial ordering in the set obtained from X by identi-
fying elements to which it is indifferent.

The foregoing is nicely illustrated by taking p as the relation in the set of
complex numbers such that zpw if the real part of z is less than, or equal to,
the real part of iv.

We shall follow custom and designate partial orderings by the sym-
bol <. If the relation < partially orders X, and x and y are members
of X, it may or may not be the case that x < y. If it is not, we write
x y. Also, we abbreviate x < y and x y to x < y and say x is
less than y, or x precedes y, or y is greater than x. We shall also use
y > x and y > x as alternatives for x < y and x < y, respectively, when
it is coliveIlient.

Defining a relation p in X as irrellexive (in X) if for no x in X is
xpx, we see that if < is a partial ordering in X, then < is irreflexive
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and transitive in X. Conversely, starting with an irreflexive and transi-
tive relation < in X, the relation < such that x < y iff' x < y or x = y
is a partial ordering in X. The proofs are left as an exercise. The deri-
vation of < from <, and vice versa, can be illustrated in concrete
terms by the definition of proper inclusion for sets in terms of inclusion,
and vice versa. If < partially orders the finite set X, the relation <
can be expressed in terms of the following concept. An element y of
X is a cover of x in X if x < y and there exists no u in X such that
x < u < y. If x < y, then, clearly, elements x,, x2, , x,, of X can be
found such that x = x, < x2 < < x = y, and each xj i., covers x,.
Conversely, the existence of such a sequence implies that x < y.

A relation p is a simple (or linear) ordering ifI it is a partial order-
ing such that xpy or ypx whenever x and y are distinct members of the
domain (which is equal to the range) of p. A relation p simply orders
a set Y if p n (Y X Y) is a simple ordering in Y. The familiar ordering
of the real numbers is a typical example of a simple ordering. In con-
trast, inclusion for sets is not, in general, a simple ordering.

To point out the obvious, the applications of ordering relations are
concerned with the determinations of orderings in various sets. In prac-
tice, ordering relations for a given set X are usually generated by as-
signed or proven structural features of X. That is, certain features of
X, such as the existence of a particular type of operation or mapping
property, will permit the definition of an ordering relation for X; an
example of this nature appears in the exercises for this section. Prop-
erties of this ordering relation may then prove useful in deducing and
describing further features of X. 'I'liercefore, it is convenient to have
available terminology which gives primary emphasis to the set rather
than to an ordering relation for it.

A partially ordered set is an ordered pair (X, <) such that <
partially orders X. A simply ordered set or chain is an ordered pair
(X, <) such that < simply orders X. For example, if 9F is a collection
of sets, then (9, C) is a partially ordered set. Again, if < is the usual
ordering for the integers, then (Z, <) is a chain. From the standpoint
of set theory, it is more economical to treat ordering relations than
ordered sets, that is, sets with accompanying order relations. For ex-
ample, if (X, <) is a partially ordered set, then < fl (X X X) is a
partial ordering relation in X. Thus, instead of dealing with X and a
relation < which partially orders it we can deal exclusively with the
ordering relation < fl (X X X), since it determines X as its domain.
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That is, all statements about ordered sets are equivalent to statements
about their ordering relations, and vice versa.

As an illustration of the preceding remark we restate our earlier
characterization of < for a finite set X partially ordered by a relation
<. if (X, <) is a finite partially ordered set, then x < y if there exists
a chain of the form x = x, < xs < . < x = y in which each x, i.,
covers x,. This result enables one to represent any finite partially ordered
set by a diagram. The elements of X are represented by dots arranged
in accordance with the following rule. The dot for x2 is placed above that
for x, ifi x, < xz, and, if x2 is a cover of x,, the clots are joined by a line
segment. Thus, x < y if there exists an ascending broken line con-
necting x with y. Some examples of such diagrams are shown below.

o1
The first is the diagram of a chain with five members. Clearly, the dia-
gram of any chain has this form. The last one is that of the power set of
a set of three elements partially ordered by inclusion: the dot at the
lowest level represents the empty subset, the dots at the next level repre-
sent the unit subsets, and so on. Such diagrams not only serve to repre-
sent given partially ordered sets by displaying the ordering relation,
but, conversely, also may be used to define partially ordered sets; the
ordering relation is just that indicated by the various broken lines.

In preparation for our next definition in connection with partially
ordered sets we discuss an example. The set 11, 2, 3, 5, 6, 10, 15, 301,
whose members are the divisors of 30, is partially ordered by the relation
< where x < y iff x is a multiple of y. It is left as an exercise to show
that the diagram of this partially ordered set is identical to that given
above for the subsets of a set of three elements partially ordered by
inclusion. Although these two partially ordered sets are obviously not
equal, they are indistinguishable so far as their structure as partially
ordered sets is concerned. This is the essence of the identity of their
respective diagrams. When this type: of relationship exists between two
partially ordered sets it is certainly worthy of note, since any property
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of one that is expressible in terms of its ordering relation has an ana-
logue in the other. Thus, we propose to formalize this type of indiscern-
ibility. The identity of the diagrams of the two partially ordered sets
mentioned above implies, first, the existence of a pairing of the mem-
bers of the two sets. 't'his can be formulated as the existence of a one-
to-one correspondence, which has the advantage that it does not limit
us to finite sets. Next, it is implied that the relationship between a
pair of elements in one set, as specified by the ordering relation for
that set, is the same as that for the. corresponding pair in the other set,
relative to its ordering relation. The following definition is basic in the
precise formulation of this property. A function f : X -*- X' is order-
preserving (isotone) relative to an ordering < for X and an ordering
<' for X' iff x < )' implies f(x) <' f(y). Then the likeness with which
we are concerned can be described as the existence of a one-to-one
correspondence such that it and its inverse arc order-preserving. The
customary terminology in this connection follows. An isomorphism
between the partially ordered sets (X, <) and (X', <') is a one-to-one
correspondence between X and X' such that both it and its inverse
are order-preserving. If such a correspondence exists, then one partially
ordered set is an isomorphic image of the other, or, more simply, the
two partially ordered sets arc isomorphic. Thus, the likeness which we
observed between the collection of subsets of a three-clement set and
the set of divisors of 30, with their respective partial orderings, may be
expressed by saying that they are isomorphic partially ordered sets.

When the concept of a partially ordered set was defined it was stated
that a collection of sets partially ordered by inclusion is a typical
example. This was rather loose talk, since the word "typical" has so
many shades of meaning. One precise (and demanding) meaning that
might be given is this: Each partially ordered set is isomorphic to a
collection of sets partially ordered by inclusion. This is proved next.

THEOREM 1 1 .1 . A partially ordered set (X, <) is isomorphic to a
collection of sets, indeed, a collection of subsets of X, partially ordered
by inclusion.

Proof. For a in X define S. to be (x E Xjx < a]. 'l'inen the mapping
f ore X into {Saga C X) where f(a) = Sa verities the assertion. The
details are left as an exercise.

This result is often stated as: "Each partially ordered set can be
represented by a collection of sets (partially ordered by inclusion)."
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In effect, the theorem means that the study of partially ordered sets is
no more general than that of a collection of sets partially ordered by
inclusion. In practice the transfer to such a partially ordered set is
usually not carried out, since many individual partially ordered sets
would lose much of their intuitive content as a result. Finally, we point
out that the theorem does not assert that each partially ordered set is
isomorphic to a collection consisting of all subsets of some set. Such
partially ordered sets, that is, those of the form (4'(A), q), do not
typify partially ordered sets in general, since they have special features.
For example, each contains an clement (namely, 0) less than every
other element and an element (namely, A) greater than every other
clcrncnt.

We conclude this section with the introduction of further terminology
for partially ordered sets that will be employed later. A least >nember
of a set X relative to a partial ordering < is a y in X such that y < x
for all x in X. If it exists, such an element is unique, so one should
speak of the least member of X. A minimal number of a set X relative
to < is a y in X such that for no x in X is x < y A minimal member
need not be unique, as the second diagram above illustrates. A greatest
member of X relative to < is a y in X such that x < y for all x in X.
A greatest element, if it exists, is unique, so one should speak of the
greatest element of X. A maximal member of X relative to < is a y in
X, such that, for no x in X is x > y.

A partially ordered set (X, <) is well-ordered iff each noncrnpty
subset has a least member. A familiar example of a well-ordered set is
the set of nonncgative integers relative to its natural ordering. Any well-
ordered set (X, <) is a chain, since for two distinct elements x and y
of X the set {x, y) must have a first. element, and hence either x < y
ory <x.

If (X, <) is a partially ordered set and A C X, then an clement x in
X is an upper bound for A iff, for all a in A, a < x. Similarly, an ele-
ment x in X is a lower bound for A if, for all a in A, x < a. A set may
have many upper bounds. An element x in X is a least upper bound or
suprcrnum for A (symbolized, tub A or sup A) i(f x is an upper bound
for A and x < y for all upper bounds for A. In other words, a suprcrnum
is an upper bound which is a lower bound for the set of all upper bounds.
An element x in X is a greatest lower bound or infinum for A (syrn-
boli2ed, glb A or inf A) iff x is a lower bound for A and x > y for any
lower bound y for A. It is immediate that if A has a least upper bound,
then it is unique, and that the same is true for a greatest lower bound.
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EXERCISES
11.1. Show that if p is a partial ordering relation, then so is
11.2. For the set of real-valued continuous functions with the nonnegative

reals as domain, define f = O(g) to mean that there exist positive constants M
and N such that f(x) < Mg(.%.) for all x > N. Show that this is a preordering,
and define the associated equivalence relation.

11.3. If < is a partial ordering in X, show that < is an irreflexive and trans-
itive relation in X. Conversely, if < is an irreflexive and transitive relation in X,
show that the relation < such that x < y iflf x < y or x = y is a partial ordering
in X.

11.4. For what sets A is ((P(A), C) a simply ordered set?
11.5. Let (X, <) and (X', <') be partially ordered sets. Show that X X X'

is partially ordered by p where (x, x')p(y, y') iff x < y and x' <'y'. The partially
ordered set (X X X', p) is the (cartesian) product of the given partially ordered
sets.

11.6. The dual of a partially ordered set (X, p) is the partially ordered set
(X, p) (see Exercise 11.1). If (A, <) is a partially ordered set and a, b C X with
a < b, then the set of all x in X, such that a < x < b, is called the closed in-
terval [a, b l. Show that the set of intervals of a partially ordered set (.V, <),
partially ordered by inclusion, is isomorphic to a subset of the product of (X, <)
and its dual.

11.7. A partially ordered set is self-dual if it is isomorphic to its dual. Show
that

(a) there are just two nonisornorphic partially ordered sets of two elements,
both of which are self-dual, and

(b) there are five nonisornorphic partially ordered sets of three elements,
three of which are self-dual.

11.8. Show by an example that if (A', <) and (X', <') are partially ordered
sets and f : A'-->- X' is a one-to-one correspondence which preserves order, then
f -r need not preserve order.

11.9. Given that f is an isomorphism between the partially ordered sets
(X, <) and (X', <'), show that x < y ifl' f(x) <'1(y).

11.10. Supply details for the proof of Theorem 11.1.
11.11. Let (X, <) be a partially ordered set. Show that a is a maximal ele-

ment iffy C X and y > u imply y = u. Show that v is a minimal element ill
yEXand y <viniplyy = v.

11.12. Let 5; be the collection of all subsets of Z+ which have at most n
members for n a fixed positive integer, and let t be the collection of all finite
subsets of V. Show that, relative to inclusion,

(a) each element of IT. having n members is maximal, and
(b) fl has no maximal elements.
11.13. As the elements of a set X we take all square regions which lie inside
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a given rectangular region which is itself not a square. Relative to inclusion,
what are the maximal elements of X?

11.14. Show that in a chain the notions of a greatest element and a maximal
element coincide, and show the same for a least element and a minimal element.

11.15. Let (X, <) be a partially ordered set with the property that each
nonempty subset which has an upper bound has a least upper bound. Show
that each nonempty subset of X which has a lower bound has a greatest lower

bound.
11.16. Show that if (X, <) is a well-ordered set, then it has the property

assumed for the partially ordered set in the preceding exercise.
11.17. Let X be a set and p an operation in X. (Thus, p is a function on

.1, X X into X; let us denote the value of p at (x, y) by xy.) Suppose that p is
cornmutative, associative, and idernpotent ]that is, xy = yx, x(yz) = (xy)z, and

xx=xforallx,y,zCA].Forx,yEXdefinex<yiflx=xy.Show that
(a) < partially orders X,
(b) if X has a least element 0, then Ox = 0,
(c) xy < x, y and, ifz < x, y, then xy > z.
11.18. The relation < where in < it ifTin divides it partially orders Z'. Show

that each pair of integers has a least upper bound and a greatest lower bound
relative to this ordering.

11.19. Show that each subset of (1'(A) partially ordered by inclusion has a
least tipper bound and a greatest lower bound.

BIBLIOGRAPHICAL NOTES
Sections 1-2. For a detailed historical survey of Cantor's work see the intro-

duction by,)ordain in Cantor (1915).
Sections 3-10. An excellent account of elementary set theory appears in

Ilamilton and Landin (1961).
Section 11. A high-level account of the theory of partially ordered sets may

be found in BirkhofT (1948).



CIIAPTLK 2 The Natural
Number Sequence

and Its
Genera lizabons

T t r s c: II A P T E R B F G I N S with a formulation of a precise definition
of the natural number sequence

.. .0,1,2,
(where we rely on the dots " " to suggest the. continuation of the
sequence beyond the numbers displayed) from an intuitive description
of this set. This definition is taken as the basis for the definition of two
operations in this set. The result is the system consisting of the natural
numbers, the operations of addition and multiplication, and the famil-
iar ordering relation-all of which the reader has known since childhood.
Although in certain respects Section 1 acids nothing to his knowledge, it
should be of interest to him to find how few assumptions are required to
derive the familiar properties of the natural numbers. Section 2 discusses
definition and proof by induction. Section 3--Section 7, and Section 9
give an account of Cantor's trans(initc aritluuctic. 'this consists of the
continuation of the natural number sequence, first with respect to
magnitude alone, and then with an ordering taken into account. In
Section 8 and Section 10 appear an account of the axiom of choice,
including proofs of its equivalence to the well-ordering theorem, 'horn's
lernnia, and various statements about cardinal numbers. Finally, in
Section 11 the classical pitfalls of Cantor's theory are described.

We call attention to the fact that Section 1 includes the first step in
the development of the real rtunibcr system within the context of set
theory. The remaining steps are completed in Chapter 3. We regard
56
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Section 1 as our first reference to the number system, since tlic only
mention of it nude in Chapter 1 was to peripheral material and may
be ignored. As we proceed we shall use only those properties which
have already been derived.

1. The Natural Number Sequence

We cannot expect that the natural number sequence can he defined
in terms of anything essentially more primitive than itself, but we can
elaborate on what our conception of it comprises in terms of notions
already developed, with the goal of clarifying our reasoning with it. As
our initial description of flit natural nutnbcrs, we say that they are
exactly those objects which can be generated by starting with an initial
object 0 (zero) and front any object n already generated passing to
another uniquely determined object n', the surressor of n. Moreover,
objects difl'erently generated are distinct. I Icre"n"' may be thought of as
an alias for "n + 1." 'I'll(- accent notation is used to emphasize that
' (prime) is a primitive operation (or function), used in generating the
natural numbers and thus is not to be confused with addition, which
can he defined later as an operation in the set. The term "successor"
stems from the notion of "next after" that is associated with the counting
numbers. "Thus, the natural numbers appear as a set of objects

0, Of, (0')', ((0')')', ... or, more simply, 0, Of, 0", 0'", .. .

The transition to the usual notation is made upon introducing
1, 2, .. -, 9 to stand for Of, 0", -, 0'' ""'", and then employing deci-
mal notation. The set of natural numbers will, from now on, be denoted
by N.

The above description implies that the relation {(n, n')In C NI is a
function. This we call the successor function and symbolize it by '. In
ternis of this function the remainder of our description can be expressed
in two properties.

Ni. ' is a one-to-one mapping on N into N - (0}.
N2. If M is a subset of N, such that 0 C M and m' C M whenever

m C M, then h1 = N.

Property N2 (which has its origin in the assertion that the succession
of discrete steps -consisting of starting with 0 and repeatedly passing
from a number to its successor-yields all of the natural numbers) is
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the basis for the principle of induction. Writing P(n) for "the natural
number n has property P," we state this as follows.

If P(O) and, for each natural number in, P(m) implies P(m'), then
P(n) for each natural number n.

7'he proof follows immediately from N2 upon consideration of
(rn C NI1'(rn)}.

In order to arrive at a precise formulation of the natural number
system, starting from the foregoing description, it is convenient to make
the following definitions. A triple (X, g, xo), where X is a set, g is a unary
operation in X (that is, a function on X into X), and xu is an element
of X, is a unary system. An integral system is a unary system (X, s, x(,)
such that

11. s is a one-to-one mapping on X into X - and
I1. if Y is a subset of X such that xu E Y and ys C Y whenever

yE_ I',then Y=X.

Thus, our description of the natural number system may be surrt-
rnarized by the assertion that (N, ', 0) is an integral system.

Before giving other examples of integral systems we call attention to
one consequence of I, and 12- that s is a mapping onto X - {xu}. This
follows from the fact that (xu} U }X f s = X, which is a consequence
of 12.

EXAMPLES
1.1. In spite of the self-imposed restrictions stated in the introduction to this

chapter, we are free to use the real number system for illustrative purposes.
Thus we can introduce the following further examples of integral systems.

(a) The numbers a, a 1- d, a -I- 2d, of an arithmetic progression (in
which a, d are real numbers with d ;t 0), the map s of this set into itself
with xs = x 1- d, and the number a.

(b) The members a, or, ar2, of a geometric progression (in which a, r are
real numbers with a 0 0 and 0 < r 0 1), the function s mapping x onto
xr, and the number a.

1.2. As a preliminary to the observation that by virtue of our initial de-
scription-the natural number sequence qualifies as an integral system, we
might have mentioned that it has the following properties.

1'1. 0 is a natural number.
P2. If n is a natural number, then n' is a uniquely determined natural

number.
P3. For all natural numbers in and n, if rn' = n', then in = n.
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p,. For each natural number n, n' 0 0.
P. If M is a subset of N such that 0 C M and m' C M whenever in E iLI,

then M = N.

These are the now famous Peano axioms for the natural number system. In
a book published in 1889, G. Peano took these as a point of departure for an
axiomatic development of the natural number systems. The axioms themselves
are actually due to R. Dedckind (1888). It is worthy of mention that each P;,
_ = 2, 3, 4, 5 lists exactly one property of (N, ', 0) in addition to those appearing
in Pi- i-,. Properties P,-P4 are simply a breakdown of Nr into "atomic" in-
gredients while P5 is N2. Conversely, starting with an integral system (X, s,
properties that imitate P1-P5 may be asserted.

Our immediate goal is to prove that any two integral systems, (X, s, xo)
and (Y, t, yo), are isomorphic; that is, there exists a one-to-one corre-
spondence f between X and Y with f(xo) = yo and f(xs) _ (Jx)t for all
x in X. This means that the elements of X can be paired with those of Y
in such a way that successors of corresponding elements correspond. For
the proof a definition is required. Let (X, g, xo) be a unary system. The
set of descendants of xo under g (in symbols, Dvxo) is the intersection
of all subsets A of X, such that xo C A and xg C A whenever x E A.
(This latter requirement will often be phrased as "A is closed under g.")
Such subsets A exist; indeed, X is one. Two characterizations of a set
of descendants are given next.

LEMMA 1 .1 . Let (X, g, xo) be a unary system. Then Dvxo is the
smallest subset of X which contains xo and which is closed under g.
Alternatively, x C Ddxo iff x = xo or there exists a y in Dvxo such
that x = yg.

Proof. The proof of the first statement is left as an exercise. For the
second, consider an element x in Either x = xo or x xo. Sup-
pose x 0 xo and that there does not exist y in Dgxo such that x = yg.
Then Dvxo - }x} is a proper subset of which contains xo and
which is closed tinder g. This is a contradiction of the first statement
in the lemma.

LEMMA 1.2. Let (X, s, .ro) be an integral system and (Y, t, yo) be a
unary system. Define

sVi: X X X Y with (x, y)sVt = (xs, yl)

Then (X X Y, s Vi, (xo, yo)) is a unary system. Iff is the set of descend-
ants of (xo, yo) under s Vt, then
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(1) f is a function on X into Y,
(II) fxo = yo and f(.rs) = (fx)t for all x in X, and

(1II) f is uniquely determined by the properties in (II).
REMARK. To assist with the understanding of (I), we suggest the
study of an example such as the following. Let the integral sys-
tern be (N, ', 0) and the unary system he ({a, b, c, d), t, c) where
t = {(a, a), (b, c), (c, d), (d, a){. Let us determine the set of descend-
ants of (0, c) under the !unction formed froth' and I by the rule given.
Along with (0, c) this set must contain (1, d) and hence, (2, a). Since
at = a, the only further members present are those of the form (n, a)
for n = 3, 4, . Clearly, this set is a function on N into {a, b, c, di.
Proof. That (X X I', s Vt, (xo, yo)) is a unary system is clear. By
definition, f is the intersection of the collection a of all sets A, such
that A 9 X X Y, (x0, yo) C A, and (x, y) C A implies (xs, yl) C A. That
f is a function on X into Y is the fifth property off appearing below.
The first four are left to the reader to verify.

(1) f C a.
(2) fCAforeachAin(t.
(3) f is a relation with X as domain.
(4) u C f iff u = (xo, yn) or there exists (x, y) C f with u = (Xs' yt).
(5) f is a function on X into Y

To establish (5) we prove by induction (that is, using the property 12
of the integral system (X, s, xo)) that for all x in X, (x, y) and (x, z)
in f imply y = z. Let Z consist of all elements of X for which this is
true. 't'hen xo C Z. Indeed, suppose that along with (x(,, yo), which. is
in f by (4), also (x0, y,) C f, where y, /`- yn. By (4), (x0, )',) = (xs, yt)
and hence xo = xs, which is impossible. Hence, the basis for the
induction follows. Assume next that x C Z. If (xs, y,) and (XS, Y2) are
in f, then by (4) and the assumption that s is one-to-one, there
exist y3, y4 C 1', such that (x, y3) and (x, y4) are in f. From the in-
duction hypothesis it follows that y3 = Y4 and hence yj = y2. This
completes the proof of the induction step. Ilence Z = X and the
proof is complete.

For (I1) there remains to prove that f(xs) = (fx)t for all x in X. If
x C X, then for exactly one y in F, (x, y) C f and, further, (xs, yt.) C f
Writing "fx" for "y and "f(x.s)" for "yt," we !have f(xs) = yl = (fx)l.

For (111), let g: X--*- Y, such that gxn = yo and g(xs) _ (gx)i for
all x in X. Let Z be the set of all x in X, such that fx = gx. 't'hen
xp C Z. Assume that x C Z. Then f(xs) _ (fx)t = (gx)t = g(xs).
Hence, xs C Z and hence, Z = X. That is f = g.
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T1IEOREM 1.1 . Any two integral systems are isomorphic.

Proof. Let (X, s, xo) and (Y, 1, yo) be integral systems. According to
Lemma 1.2 there exists a function f: X--->- Y, such that fro - y and
f(xs) = (fx)t and a function g: Y - Xsuch that,gyo xo and g(p) =
(gy)s. We contend that g o f = ix, the identity function on X. Let Z he
the set of all x in X such that (g f )x = x. Clearly, x C Z. Further, if
x E Z, then

(g °1)(xs) = g(1(xs)) = g((fr)l) = (g(fx))s = ((g ° f)x)s xs.

That is, if x E Z, then xs C Z. Hence 7, = X and g -f - i x. Sim-
ilarly, f o.g = iy. Together, these results imply that f is a one-to-one
correspondence between X and Y. Finally, fxo = yo and f (xs) = (fx)l,
so the systems are isomorphic.

This is a significant result for us. To insure that it is understood, let
us review the pertinent facts. Our initial (and purely intuitive) descrip-
tion of the natural number sequence led us to conclude that it is an
integral system. Such an observation in itself gives no indication of the
degree to which it captures those features and only those features which
we intuitively assign to the natural number sequence. I hcorcun 1.1
gives us precise (and satisfying) information on this score, for it asserts,
in effect., that apart from notation used there is only one integral system.
Thus, the statement that the natural number sequence is all integral
systcrn amounts to a complete description. This we lake as our formal
de/inition of the natural number sequence. What this conies to is fixing on one
particular integral system and designating its initial clement by 0, its
successor by 0', and so on.

To expedite our development of properties of the integral system
(N, ', 0) we derive another consequence of Lemma 1.2.

'I'll E 0 It EM 1 .2. Let B be a noncrnpty set, c be an clement of B,
and g be a function on N X B into B. Then there exists exactly one
function k: N B such that

k(0) = c and k(n') = g(n, k(n)).

Proof. Define

1: N X I3 -* N X 13 where (n, b)t = (n', g(n, b)).

Applying Lemma 1.2 to the integral system (N, ', 0) and the unary
system (N X 13, t, (0, c)) yields a function

f : N -* N X B where f0 = (0, c) and fn' = (fn)l.
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We assert that

i CHAP. 2

fn' = (n', g(fn)) for n C N.
Since JO' = (fO)t = (0, c)t = (0', g(0, c)), the assertion is true for
n = 0. Assume that it is true for n and consider it for n'. We have

fit" = (Jn')t = (n', g(fn))t = (n", g(it', g(fn))) _ (n",
g(fn')),

as required.
Now define

k: N - B where k(O) = c and k(n') _ (g o f)(n).

Then k(O') (g -f)(0) = g(f0) = g(O, c) = g(O, k(0)) and k(n") _
g(fn') = g(n', g(fu)) = g(n', k(n')). Hence, k(0) = c and k(a) _
g(n, k(n)) for n C N. 't'hat k is unique is shown by a straightforward
induction proof, which is left as an exercise.

We turn now to the definition of an ordering relation for N. The basis
for the intuitive ordering of the natural numbers is the order in which
they are generated. One says that in is less than n iff m is generated before
is in the course of generating n or, what amounts to the same, m is less
than or equal to n if n = in or n = m' or it = in" or . This hhra;in;
is the origin of our definition of < for the integral system (N,', O. For
in, n in N, we define

m<n
if n C Dm, the set of descendants of rn under '. Those properties of sets
of the type Dm which will prove useful in developing consequences of
this definition are listed next.

D,. Dn = }n} U Dn'.
1)2. Dn' 9 [Dn]', the set of successors of elements of Dn.
1)3. n V Dn'.
D,. Dm = Dn implies that in = it.
1)2. If 0 C M C N and Al is closed under ', then Al = Dk for a

uniquely determined k C N.

Proofs of 1), and 1)2 are left as exercises. We prove 1)3 by induction.
It is true for n = 0, since the contrary (0 C DO') implies that 0 is a
successor. Assume that n (Z Dn'; to prove that n' (7 Dn". Assume, to the
contrary, that n' C Dn". Since Dn" c JDn' j' by 1)2j we have n' = q'
for q in Dn'. Hence n(= q) C Dn', contrary to the induction hypothesis.
This completes the proof of 1)3. '

To prove D,, assume that Din = Dn and in X n. In view of Ds it
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follows that m C Dn' and hence that 1)m C Dn'. Thus, Dn C Dn'. But
this contradicts the identity Dn' C Dn, which follows from 1), and 1)3.
'1'herebY, D4 is proved. I Tints for proving D5 appear in an exercise.

We are now in a position to prove the basic property of the relation <.

'1'I-I E O R F M 1 .3 . The relation < well-orders N.

Proof. The reflexivity and transitivity of < are immediate; its anti-
symmetry follows from D4. Thus, < partially orders N. It remains to
prove that a nonempty subset of N has a least rnernber. Assume that
0 C P C N and that AP is the intersection of the collection of all
closed subsets of N which include P. Then AP is closed under ' and
hence, by I)5, AP = Dk for a uniquely determined k. Now k E P,
since the contrary implies in turn that P C Dk', AP 9 Dk', Dk C Dk',
and this last inclusion is false. Further, if p k and p C P, then
p E_ Dk'; that is, k' < p. Since k < k', it follows that k < p, so k is
the least rnernber of I.'.

Addition of natural numbers as understood intuitively, numbers
among its virtues the following two properties. For all natural numbers
m and n, 0 + n = n and nz' -I- n = (rn ± it)'. According to the next
theorem it is possible to define exactly one operation a in N, regarding
(N, ', 0) as an integral system, with these two properties. As such, a
takes on the role of the only possible candidate for an operation in N
which might have all the properties of intuitive addition. That it does
is anticipated by our calling a "addition" from the outset and designat-
ing the value of a at (m, n) by "m + n."

TI I I:OR E' M 1 .4. For the integral system (N, ', 0) there exists ex-
actly one function a: N X N -} N such that

(1) for each n in N, a(0, n) = n, and
(I1) for all m and n in N, a(m', n) = (a(in, n))'.

This function is addition in N; a(m, n) will be abbreviated to m + n.
Proof. Let n be a fixed element of N. Define g: N X N ->- N where
g(x, y) = y'. According to Theorem 1.2 there exists exactly one
function

a,,: N -'- N where a (0) = n and g(m,

a by a(m, n) = for in, n in N. Clearly this function
satisfies (I) and (11). To prove its uniqueness, let -y be any function on
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N X N into N such that y(0, n) = n and y(m', n) = (y(m, n))'. For
each n define yn: N --} N by

'yn(m) = y(m, n).

Then y(0, n) = it and

-yn(m') = y(nt', 71) = ('y(m, n))' = (yn(rn))'.
It follows from Theorem 1.2 that y = a,, for each n. Thus, for in, n
in N, a(m, n) = an(m) = yn(m) = y(m, n). 1-lence, a = y.

TI-IEOREM 1.5. Addition in N has the following properties.

A1. Associativity. For all in, it, and p in N,

in + (n -}- p) = (in 4- n) -1- p.

A2. Cornmutativity. For all in and n in N, in -1- n = n + in.
A3. Cancellation laws. For all in, n, and /p in N, p + in = p + n

implies m = n and in -I- p = n -I- /i implies in = n.
A4. For all in and n in N, in < it if there exists p in N such

that p -1- in = n.
A,. For all m,n,and pin N,m<niflp+in <pA-n.
A6. For all in and n in N, in -- a = 0inipliesin = 0 and n = 0.

I'ioof. We verify in turn Al---AB. In the notation adopted for addition,
its assigned properties appear as 0 -1- n = it and in' -1- n = (in -F n)'.

A1. Let n and p be fixed and let
141 = [nl C NIn: + (n + p) = (m -F n) -F p}.

Then 0 C M since 0 A- (n -I- p) (0 -I- n) -1- p. Assume that
m C M. 7'licn

in' -1 (n - p) = [m -I- (n -1 p) (m 4. n) + p l'
= (in + n)' -I- p = (in' 4 n) -I p

so that m' C M. IIence M = N and the proof is complete.
A2. As a preliminary step we prove that for a fixed in, n' + in =

n -I' in' for all n in N. 't'his is true of 0, since 0' + in =
(0 -1- m)' = in' - 0 -1 in'. Further, if it is true of it then it is
true of n' since (n')' -4- in - (n' + in)' = (n -I- in')' _- n' -1- m'.
'I'lu assertion then follows by 12. Iris applied in the last
step of the proof of the next statement.. 11' for it fixed, N _

n4-m}, then N N. Indeed, jim C N,
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then in' -f- n = (in + n)' _ (n + m)' = n' -I- m = n -1- na'.
That is, an' C N.

We can now prove A2. Clearly 0 C No, and this with the
inclusion N;, C N implies that No = N. Hence 0 C 1V,,, and
this with N,', C N implies that N = N, which proves A2.

A3. We prove the contrapositive of the first statement. If in, n are
distinct fixed natural numbers, then p -f m 5,6 p + n for all p
in N. Clearly 0 C Ip C Nip + in Fl- P + n 1. Assume that p is a.
member of this set. Then p + in 0 /i + n, from which it fol-
lows that (p -I- in)' x (p + n)', or/i' A- in :X p' --I- n. This com-
pletes the proof that /i + in = p -I- n implies in = n. The
second assertion then follows, using A2.

A4. l.ct in and it be natural numbers with in < It. Then

Ix C Nix ± in n)

is noneanpty (indeed, one can prove by induction that
n -1- in > n for all in and n) and consequently has a least
member p by Theorem 1.3. Either p -1- m = n or p + in > n.
Assume that p -1- in > n. Then clearly p 0 0 and hence p is the
successor of a natural number q. 't'hus q' + in = (q -1- ?it)' > n,
which implies that q + in > n. Since q < q' _ /i, this yields a
contradiction. Ilenee /5 -I- in = n.

The converse, which asserts that if p + in = a then in < n,
follows from the relation in < p -I- in mentioned above.

A5. If an < n, then d -I- in = n for sonic d 0 0, using A4. Ilence
p-I-n=p+(d+in) _ (p +d)+in

= (d -1 p) A-in =
Thus, by A4, P -I- in < p -I- as and, since d 0 0, the strict in-
equality p + in < p + n follows. The proof of the converse is
left as an exercise.

A6. We shall prove the contrapositivc statement. If in ,-*`- 0 or
n 0, then in -I- n - 0. Assume that in ; 0. Then there
exists p such that in = p'. I fence in + it = (p -I- n)' and, con-
sequently, in + as 0, being a successor. Similarly, if n 04 0,
then in -I-- as 0. Thus, if in or n is different from zero, sP
is in + it.

Multiplication of natural numbers, as understood intuitively, enjoys
the following two properties, among others. For all natural numbers in
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and n, On = 0 and m'n = mn -I- n. According to the next theorem it is
possible to define exactly one operation µ in N, regarding (N, ', 0) as an
integral system, with these two properties. Accordingly, µ takes on the
role of the only possible candidate for an operation in N which might
have all the properties of intuitive multiplication. That it does is
anticipated by our calling y "multiplication" from the outset and
designating the value of it at (in, n) by inn.

T H F O R I? M 1 .6. For the integral system (N, ', 0) there is exactly
one function µ: N X N -* N such that

(I) for each n in N, µ(0, n) = 0, and
(II) for all m and n in N, 4(in', n) = p (m, n) + n.

This function is multiplication in N; µ(m, n) will be abbreviated to
m n or simply Mn.

Proof. Let n be a fixed element of N and let g: N X N -r~ N where
g(x, y) = y + n. According to 'Theorem 1.2 there exists exactly one
function

µ,,: N --} N where y. (O) = 0 and u,,(m')
= g(rn, U,,(rn)) = n.

Now define µ by µ(m, n) = for in, n in N. Clearly this function
satisfies (I) and (11). Its uniqueness may be inferred from that of µ
for each n.

Ti I EO R F.M 1 .7. Multiplication in N has the following properties.

Mr. Associativity. For all in, it, and p in N, m(np) = (mn)p.
M2. Comrnutativity. For all in and n in N, nut = nin.
M. Cancellation laws. For all in, n, and p in N, p 0 and

pin=pn orm/i =u imply 7n = n.
M9. I)is(rihutivity over addition. For all in, n, and p in N,

rn(n + p) = inn -{- nip and (n + pi)in - nm + pin.
M6. For all in, n, and p in N, /' 34 0 implies that m < n ifI'

PM < P11.
M6. For all in and n in N, mn = 0 implies that in = 0 or n = 0

or, what is equivalent, if in 0 and n r 0, then mn 0 0.

hoof. It is convenient to prove these properties in the order Ma, Mx,
M 1, M6, M3, M.
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M4.

M2.

For fixed n and p, consider {m C NIm(n -I- p) = inn -I- rnp}.
Clearly 0 is a member of this set, and if m is a member then
so is m', since

m'(n + p) = m(n 4- p) + (n + p) _ (mn + mp)
-I- (n + p) _ (nnn + n) + (nip + p) = m'n + m'p.

This establishes the first distributive law in M4. The second
follows from this and M2, which we prove next.
It is left as an exercise to show by induction that for all n
in N, ri0 = 0 and nO' = n. Assuming these preliminaries, fix n
and consider {rn C Njmn = nm}. This set contains 0 since
On = 0 = nO. Assume it contains in. Then it contains m',
since

m'n = inn+n = nnz+n = nm + nO' = n(m + 0')
= n(0' + m) = nm',

where we have used the preliminary result n'O = n and the
one distributive law already proved. Hence M2 follows by the
principle of induction.

M,. For fixed n and p consider {m C NIm(np) = (mn)p}. This set
contains 0, and if it contains m then it contains in', since
m'(np) = m(np) + np = (mn)p + np = (mn + n)p = (m'n)p.

M6. Assume that mn = 0 and in 0 0. Then in = p' for some p.
Hence 0 = inn = p'n = fin -I- n and n = 0 by A6.

M3. Assume in = pn and p 0. Since < simply orders N, either
rn < nor n < in. If rn < n, then by A4, n = d + in for some d.
Then

0 -}- pm = pnz = pn = p(d -I- m) = pd -I- pm.

Hence, by A3, 0 = pd. 't'his and p 0 0 imply that d = 0, by
M6. hence in = n. The proof is similar starting with n < in.
The other cancellation law then follows, using M2.

M5. Assume that m < n. Then, by A3, n = d + in for some d F& 0.
Hence pn = pd -I- pm where pd 0 0 by M6. I lence pm < din
by A4. The converse is left as an exercise.

We have stressed the fact that the preceding definitions of an order
relation and the operations of addition and multiplication in N are
based solely on the assumption that (N, ', 0) is an integral system. It is in
order to prove that the indiscernibility of two integral systems, as
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described in Theorem 1.1, extends to the case where the ordering
relation, addition and multiplication are incorporated into each.

TiIEOR EM 1 .8. Let (X, s, xu) and (X*, s*, x;) be integral systems.
Let -+-, , and < be the addition, the multiplication, and the ordering
relation, respectively, in X which satisfy the earlier definitions. Let
+ *, *, and <* be the corresponding relations in X*. Then there
exists a one-to-one mappulg f on X onto X* which preserves each of
these relations in the following sense:

(I) Ax + y) = f(x) +*f(y),
(2) f(x y) = f(.Y) f(y),
(3) x < y iff f(x) <* f(y)

Proof. According to 1.1 there exists a one-to-one mapping
f on Xonto X* such that f(xo) _ xi, and f(xs) = (f(.x))s*. This rilap-
ping fulfills the conditions (1)-- (3). To prove that (1) holds we fix y
and consider Y =I x C X l f (x +y) ---.f(x) -h- * f (y) } . 't'hen xo E Y,
since f(xo + y) = f(y) = xU +* f(y) = f (xo) f-* f(y). Also, if x C Y,
then

f(x.s -H- y) = f((x + y)S) = (f (X + y))S*
= (AX) + * f(y))s* = (f(x))S* +*f(y)

f(xs) +*f(y),

so XS C 1'. Hence Y = X.
The proof that (2) holds for f is left as an exercise. That f preserves

the ordering relation in both directions may be inferred from (1) and
the characterization of the ordering relation in terms of addition
given in A4 of "Theorem 1.5.

This concludes the first. stage of the derivation of basic properties of
the natural number sequence regarded as an integral system. Upon
abbreviating 0' by 1, the successor n' of n can be written as n. 4- 1, since
n' = (0 f- n)' = it + 0' = n + 1, and we shall henceforth do so. In the
next section deeper properties concerning definition and proof by in-
duction are considered. Among the applications discussed is the unique
factorization theorem for N. As a consequence of Theorem 2.2 there
follows the general associative laws for addition and multiplication,
which generalize A, and Mi. Among the exercises for Section 2 appears
the general commutative law For any commutative composition; this
yields commutative laws for addition and multiplication which gen-
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eralize A2 and M2. Finally, a general distributive law can be derived
from M4 by induction.

In brief, regarding the natural number sequence as an integral system,
all of the familiar arithmetic of the natural numbers can be derived.

EXERCISES
I.I. Show that a set X, together with a function f, determines an integral

system provided that (i) f is a one-to-one map on X onto a proper subset of X,,
and (ii) whenever Y is a subset of X such that Y contains an element of X -
[XJ f and [Y]f S Y, then Y = X.

1.2. This exercise is concerned with the Peano axioms in Example 1.2. So
they may be considered objectively, we rewrite them as assumptions about a
set X.

P. xo C X ; that is, X is nonempty.
P*. ' is a mapping on X into X.
Pa. If x, y C X, and x' -y', then x = y.
I'4 IfxCX, thenx',-ti`X1).
P;. If 1' C A' and xQ C Y and, whenever y C Y then y' C Y, then Y - X.

Show that P;-P4 imply that X, together with the function defined in P2', and xo
form a unary system which satisfies I.

1.3. Construct examples of systems which satisfy each combination of four
of the five Peano axioms in Exercise 1.2 but violate the remaining one.

1.4. Complete the proof of Lemma 1.1.
1.5. Complete the proof of Lemma 1.2.
1.6. Complete the proof of Theorem 1.2.
1.7. Establish D, and D2 as properties of descendants.
1.8. Establish D5 as a property of descendants by first proving that if n tZ M,

then M C Dn'. Deduce that if, in addition, n' C Al, then Al = Dn'. 't'hen
proceed with the proof of D6 by considering the case where 0 C M and that
where 0 (7 M.

1.9. Let X be a set, g: X -'- X, and n be a fixed element of N. Show that
Lemma 1.2 implies that for each x in X there exists exactly one element y in X
such that (n, y) is a member of the set of descendants of (0, x) under 'Vg. The
resulting function on X into X we designate by g". Show that g" = ix, g' = g,
and g"' = g" o g for all a in N.

1.10. Let /3: N X N --} N with 13(in, n) = ns'" where s is the successor func-
tion on N and s" is defined in Exercise 1.9. Show that 13 is addition in N.

1.11. Complete the proof of A4 and A5 in Theorem 1.5.
1.12. For n in N define t,,: N ->- N by at,, = a I n. Show that the function

v: N X N - hl with v(m, n) = Ot. is multiplication in N.
1.13. Complete the proof of M5 in 'I'hcorcm 1.7
1.14. Theorem 1.4 is applicable to any integral system. Determine the func-



70 The Natural Number Sequence and its Generalizations I CI I A r . 2

tion a of Theorem 1.4 for each of the integral systems (a) and (b) defined it,
Example 1.1.

1.15. Theorem 1.6 is applicable to any integral system. Determine the func-
tion µ of Theorem 1.6 for the same two integral systems.

1.16. Using Theorem 1.5, show that in N

(a)
if x + u = y and y + v = x', then either u = 0 or v = 0.

1.17. Prove that for a, b in N with b 7 0, there exist unique elements q and r
of N, such that a = qb + r where r < b. This is the division algorithm for N.

1.18. Let S be a set such that there exists a one-to-one mapping F on S onto
a proper subset of S. 'I'hen F induces a mapping f on 6'(S) into 6'(S) in an
obvious fashion and (61(S), f, S) is a unary system. Form 1))S and define
s: DfS -*- DfS by As = f(A). Show that (DfS, s, S) is an integral system.

2. Proof and Definition by Induction

In the preceding section we described and repeatedly used the prin-
ciple of induction as a method of proof. 't'here is a second form of this
principle which also finds many applications. To distinguish the two, let
us call that one already discussed the principle of weak induction. In
weak induction, to prove that P(n) for all natural numbers n, one proves
P(0) arid then derives P(m + 1) from the assumption that P(m). In the
second form of the principle, which we call the principle of strong in-
duction, one assumes each of P(0), P(1), , P(m) and uses them to
derive I'(m + 1). With more assumptions, in general, it is easier to derive
P(m + 1). Hence, strong induction finds applications as a method of
proof where direct application of weak induction would be difficult. A
precise formulation of the principle follows; as before, P(n) stands for
"the natural number n has property P."

If P(0), and if, for each natural number m, P(r) for all r < in implies
P(m + 1), then P(n) for each natural number n.

The validity is an immediate consequence of the following theorem
and is left as an exercise.

THEOREM 2.1. Let M be a set of natural numbers such that

(1) 0 C M, and
(II) if rCMfor each r <rn,then m+I C M.

ThenM=N.
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Proof. Consider N - Al. If this set is nonempty then it contains a
least member, byTheorern 1.3. This number is not 0 by (1) and hence
may be written in the form m ± 1. Then, for each r < m, r E Al.
By (11) it follows that m -I- 1 E Al, contrary to the choice of '?n 4- 1.
Thus, the assumption that N - Al is nonempty leads to a contra-
diction. Ilence Al = N.

Our formulation of both the principle of weak induction and that of
strong induction has been for the case where the induction begins with 0.
Each case can be generalized to start with any natural number no. In
this circumstance the conclusion reads "for all natural numbers n > no,

EXAMPLES
2.1. As an illustration of a proof by strong induction we prove the theorem

that every integer greater than I has a prime factor, starting the induction
with 2. Obviously 2 has a prime factor. Assume the theorem for all m with
2 < m < n and consider n -1- 1. If n -- 1 has no factor a with 1 < a < n -I- 1,

then n + 1 is a prime and has itself as a prime factor. If n + 1 has a factor
a with I < a < n -1- 1, then 2 < a < n. By the induction hypothesis a has a
prime factor b, which is then a prime factor of n -I- 1. 't'hus, in every case,
n -I- I has a prime factor.

2.2. As a somewhat more important illustration of proof by strong induction,
we prove next what is often called the fundamental theorem of arithmetic:
Every natural number greater than 1 has a representation as a product of
primes that is unique to within the order of the factors. Again we begin the
induction with 2. Clearly, 2 has such a representation. Assume that all num-
bers less than n have unique representations and consider n. The set of divisors
of n which are greater than 1 is nonempty and, hence, has a least member p.
Then p is a prime since a divisor q of p with 1 < q < p would be a smaller
divisor of n. If n = pram, then n, has a unique representation by the induction
hypothesis. Replacing nm by its unique representation as it product of priunes
yields a representation of n = pnm as a product of primes, and this is the only
representation of n which contains p as a factor. If the theorem is false for n
then it has a second representation. If q is the smallest prime present in this
second representation, then q > p, since this other representation of n does not
involve p and p is the smallest divisor (> 1) of n. Let n = qn2 and q = p + d.
Then n = pn2 -I- dn2. Since p divides n, p divides dn2. Now dn2 < n and, conse-
quently, has a unique representation. I lence, p divides d or p divides n2. But p
is not a factor of n2 since it contains no factor less than q and q > p. Thus p
divides d. Let d = rp. Then q = P + rp = p(1 + r). This is a contradiction
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since q is a prime. Thus n has no decomposition other than the essentially
unique decomposition with p as a factor.

We consider next definition by induction. Two examples which have
already been given are that of addition and that of multiplication in N.
These were justified, we recall, by an appeal to 'T'heorem 1.2. A defini-
tion which can be justified by an appeal to Theorem 1.2 is called a
definition by weak induction. Other examples of this type of definition
are that of b" (for a real number b and a natural number n) as

b°=1
and n! (for a natural number n) as

0 ! = 1 , (n - { - 1) ! (n + 1) n ! .

The reader may question the necessity of resorting in such cases to
Theorem 1.2 or, what amounts to the same, the complexity of the proof
of Theorem 1.2. For he may be satisfied with the following argument
that the two conditions

k(0) = c,
k(n -{- 1) = y(n, k(n)),

where-- restating the hypothesis of Theorem 1.2, c is it given constant,
and g is a specified function of two arguments- do define it function k.
Clearly (so the argument goes) the two conditions define k(0). Then
with the choice of 0 for n in the second, k(1) is specified:

k(1) _ g'(0, k(0)) = g(0, c).

Next, setting a = 1 in the second condition, k.(2) is specified:

k(2) = g(1, k(1)) = g(1, g(0, c)).

Proceeding in this manner, k(n) is uniquely specified for any given
natural number and only such. Thus, a function whose domain is N
has been defined.

There is an error in this intuitive reasoning. To disclose it we recall
that a function is a set, so that to define a function is to define a set (of a
certain kind). The procedure just employed permits one to define as
many members as he chooses (namely, (0, k(0)), (1, k(1)), -, (n, k(n)),
for any preassigned ni of a certain set, but it does not yield a definition
of the set consisting of all such ordered pairs, unless the function which
the intended set is to delinc is already known. In brief, the error consists
in using a function symbol without first giving a function for it to
denote.
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Adrniuedly, the intuitive argument does make it plausible that the
two conditions define exactly one function, and the proof of "I'hcorcnn 1.2
settles the matter.

Another instance of a definition by weak induction (as well as a proof
by weak induction and one by strong induction) occurs in the derivation
of the general associative law for an arbitrary associative operation in a
set. Reference has already been made to this result. The setting in which
to view it may be described as follows. Up to this point we have con-
sidered several (binary) operations in various sets. By definition, these
are functions of the form f : X2 -> X where X is some set and X2 is an
abbreviation for X X X. Each of the following notations has been used
for the image of Via, b) under f at one time or another: a U b, a fl b,
a o b, ab, a -I- b. In order to achieve impartiality so far as notation is
concerned in this discussion, we shall use a * b for the image of (a, b).
In terms of f, two ternary operations in X that is, mappings on X3
into X- may be defined. One of these maps (a, b, c) onto (a * b) * c and
the other maps (a, b, c) onto a * (b * c). Similarly, a total of five 4-ary
operations in X may be defined in terms of f. These are the mappings
on X1 into X, such that the image of (a, b, c, d) is one of

((a * b) * c) * d, (a * (b * c)) * d, (a * b) * (c * d),
a * ((b * c) * d), a * (b * (c * d)).

In like fashion f serves to generate n-ary operations in X for n > 4. For
an arbitrary n (> 2) let us call the image in X of (a,, a2, , a") in X"
under an n-ary operation originating with f a composite of a,, a2, , an
(in that order). Such an entity is simply the string a, * a2 * * a",
together with sufficient parentheses to specify unambiguously n - 1
applications off. If f has the property that, for all a, b, and c in X,

a*(b*c) = (a*b)*c,
that is, f is an associative operation in X (or satisfies the associative law,
as it is often expressed), then the various composites of at, a2, . , an are
all equal to each other. This is the general associative law, which we
now prove.

TH E O It E M 2.2 . Let (a, b) -} a * b be an associative operation in
X. Then all composites of a,, a2, , an are equal. The common value
will be written as a,*a2* *a".
Proof. We use weak induction to define a particular composite

ofa,,a2, ,a,iforn> l:
IIis I'a; = a,, II,=,+'a; _ (IIt: ac) * a"+1.
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Now we prove that for all m,n > 1,

(A) (11 a,) * (IT, an+j) = II; +mai.

Let n be fixed; we prove by weak induction on in that the relation
holds for all in > 1. It is true for in = I by definition. Assume that
it is true for in and consider the case in + 1. We have

(11;a,) * II", 'a., j = nia, * ((lira" I,) * an,m+,)
_ ((n;a,) * +j) * an I In+I

n-1 m

as required. Thus (A) is valid for all in, n > I.
This property of the particular composite defined is used to prove

next by strong induction on n that any composite of a,, a,,,
n > 1, is equal to 1l a,. Clearly this is true for n = 1. Assume it true
for all composites of r elements of X with r G n, and consider any com-
posite associated with (a,, a,, 1,). By definition it is a composite b
* c, where b is a composite associated with (a,, a2, , a,) and c is a
composite associated with (a, ,,, a,-F2, , a. I,). If r = it, then b =
lira, by the induction hypothesis, c = a,, 1,, and b * c = 1141"'a; by
time definition of Ilia,. The proof is then complete for this case. Other-
wise, r < it and by the induction hypothesis

b = Ma;, c = ri; 1' -'a,+;

Then b * c = 1I; a; by (A).
It follows that all composites of a,, a2, , a are equal, each being

equal to 11 a;.

Theorem 1.2 can be extended to the following result.

THEOREM 2.3. Let B be any rnonerrmpty set and c a given func-
tion on 1;"--' into B for it > 2. Let g be any function on N X B"
into B. Then there exists exactly one function k: N X B"-' -+ B
such that

k(p) x2, ..., xn) = c(x2, ..., xn),
k(x', x2, ..., Xn) = g(X, k(x, x''2, ..., xn), x2, ... x,,)

The resulting function k is said to be obtained from c and g by primitive
recursion. One may think of the earlier theorem as being the special
case which results when all "parameters" X2, . , xn are absent; thus we
shall also say that the function k of Theorem 1.2 is obtained by primitive
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recursion. Hints for a direct proof of Theorem 2.3 are given in an exer-
cise.

There is considerable interest in the class of number-theoretic
functions (that is, functions on N"' into N where p > 1), which can be
defined by induction in an elementary way. One motivation for this
lies in the possibility of computing values of such functions by purely
mechanical means-by a set of instructions which require no "creative"
thought in their execution. The operation of primitive recursion enters
naturally into such considerations, since if c and g are number-theoretic
functions which are computable by mechanical means, then the same
appears to be true of the function k obtained from c and g by primitive
recursion. Another operation which appears to produce computable
functions from computable functions is that of composition in the follow-
ing extended sense of our earlier usage of this terra: The function
h: N" -j N is obtained by composition from functions f: N" -- N and
gc:N"-} N, i = 1, 2, ,m,if

h(xi, ., x") = f(gi(xi, ..., x"), ..., 9,,,(x,, ..., x.,))

The function h obtained in this way will sometimes be written as
g,, , g,"). If we specify an initial supply of functions which are

judged to be computable, then all functions obtainable by the operations
of'composition and primitive recursion should be of the same sort. Such
considerations may be taken as motivating the definition of the following
class of functions.

As the initial supply of functions we take those of the following three
types.

(I) The successor function S on N : S(x) = x'.
(II) The constant functions Cq where CQ(xr, , x,,) = q,

n = 1, 2,

(III) The identity functions 11,n: N" --} N, where

Ui,(x,, ..., x,,) = xr,
1 <i <nandn= 1,2,

We next define a primitive recursive derivation to be a finite se-
quence fo, f,, . , fR of functions, such that any member of the sequence
is either an initial function or else is obtained from preceding members
of the sequence by composition or primitive recursion. Then the class
that we have in n-rind, the primitive recursive functions, are those
functions f such that there is a primitive recursive derivation whose final
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member is J. This class contains all the numerical functions which one
ordinarily encounters, as well as others. Some examples follow.

EXAMPLES
2.3. Addition in N is a primitive recursive function. A derivation, wherein

we have used function values rather than functions in order to assist with the
understanding, is

SO,) = y', U2,(-, z, y) = Z, Ax, Z, y) = s(Uz (x, z, y)) - z', U11(y) = y,
J a(0, y) = Ui (.y),

a(x', y) = J(x, a(x, y), y).
The first and second functions involved are initial functions, the third is obtained
by composition from them, the fourth is an initial function and, finally, cx is
obtained by primitive recursion from the third and fourth. We leave for exer-
cises similar derivations for irmultiplication, the exponential function, and time
factorial function.

2.4. The predecessor of x, pd(x), is defined by pd(0) = 0 and pd(x') = x.
It is prirnitivc-recursive by virtue of the primitive-recursive derivation:

Cot (x) - 0, U; (x, y) = x,
Jpd(O) = r,,,,
' pd(x') = Ui(x, pd(x)).

2.5. Proper subtraction, =, is defined by x ._ 0 = x and x - y'
pd(x-y).That is,x=-y=x-yifx>yandx -y=0 ifx<y. This is
a primitive-recursive function. To verify this we initially write 6(y, x) for x _ y
and obtain the following primitive-recursive derivation for fi:

Ui(y, z, x), pd(z), J(.y, z, x) = pcl(tl2'(y, z, x)), 113'0,, Z, x),
f S(0, x) = tts(y, Z, x),
l.h(y, x) = J(y, 6(y, x), x).

Here we have taken a shortcut by listing the predecessor function as an initial
function instead of a derivation for it. To ohtain x =- y as the value of _ at
(x, y) (instead of (y, x), as in b), three further steps are necessary:

1121(x, y), t1; (X, v), y), U2(X, Y), U (;, y)).

The exercises include further instances of primitive-recursive func-
tions. In addition to those listed above and in the exercises, it is possible.
to establish as being prirrritive-recursive, for example, the function whose
value at n is the (n -}- I)th. prime number, and the function JJ (a > 0)
whose value at n is the exponent of the nth prime number (in order of
increasing magnitude) in the factorization of a into a product of primes,

rn, .where we regard the factorization a = 2an3a, as extending in-
definitely, with all but a finite number of exponents being 0. Further,
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it is possible to show that all functions which can be obtained by the
procedure that is described next arc primitive-recursive.

Another form of definition of functions by induction parallels the
principle of proof by strong induction. Thus, it is often called definition
by strong induction and has, as its distinguishing feature, the possi-
bility of defining a function k on N such that k(n -I-- 1) is specified in
terms of some, or all, of the values k(0), k(1), . , k(n). Specifically, the
circumstances take the following form: There is given a noncmpty
set B and a function h, such that for each natural number n, It assigns
to each element of Bn-t' an element of B. 'I'hcrr k: N -* B is supposedly
defined by the two conditions

k(O) = c (a given member of B),
k(n + 1) = h(k(O), k(1), , k(n)).

As for h, it is convenient to think of it as a function whose range lies
in B and whose domain is the set q of all functions j having as domain
N,, _ {0, 1, . . , p} for some p and, as range, a subset of B. For then the
intended value of k at n -I- I is simply where AIN,, is the restric-
tion of k to {0, 1, , n'. The theorem concerning such circumstances is

TIIEOR EM 2.4. Let B be a noncmpty set, let c be an clement of B,
and let h be a function whose range lies in B and whose domain is
the set ,) of all functions j having as domain N, for some natural
number p, and as range a subset of B. Then there exists exactly one
function k: N -j- B such that

k(0) = c and k(n -1- 1) =

for each natural number it. Here kIN,, is the restriction of k to the
domain N. = 10, 1, 2, ..., n}.

Proof. We establish first the uniqueness by contradiction. Assume
that the functions k, and k2 satisfy the conditions and that k, 7-1 k2-
Then there exists a first natural number it for which k,(n) k2(n).

Since k,(0) = c = k2(0), n > 0 and, hence, it = p -+- I for some /i. But
then k,IN,, = k21N,,, so that ki(n) = h(k,IN,) k2(n), a
contradiction.

Turning to the matter of existence, we propose for the function in
question, the union k over the family 3C of all functions .1 in q, such
that j(0) - c and, if N is the domain of j, then for each m < n,
j(nr + 1) = h(jIN,,,). That k is a function on N satisfying the condi-
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tions of the theorem appear below as properties (3), (4), and (5) of k.
The proofs of properties (1), (2), and (3) are left as exercises.

(1) If jr and j2 are distinct members of 3C, then either jc C 32 or
32Cit.

(2) k is a function.
(3) k(0) = c.
(4) The domain Dk, of k is equal to N.

Proof. Clearly At C N and, by (3), 0 C A. To prove equality we
assume the contrary. Then there exists a least member of N of the
form p -F I which is not a member of Dk. Then / is the greatest
member of Dk and k U ((p -F- 1, h(k))} C K. Ilence p ± 1 C At, a
con tradic Lion.

(5) k(n + 1) = for n in N.

Proof. For each n C N, n + 1 C DI, by (4), and hence, for some j
in X, n + I C D. Then k(n + 1) = j(n -f- 1) = h(kIN).

EXERCISES
2.1. Deduce the principle of strong induction from Theorem 2.1.
2.2. The definition of b" given in the text has the following form. Given

g, : B --} B and c C B, there are set forth two conditions f(0) _ c and
J(n -1 1) = gi(f(n)) where f is a function which is supposedly being defined.
Deduce that these conditions do define exactly one function J: N -p- B as a
special case of Theorem 1.2.

2.3. Supply the independent proof of the result in Exercise 2.2 along the
following lines. Let us say that a natural number n has property E(f) ill case f
is a function on N. into B where

f(O) = c -and J(k + 1) = gi(J(k)) for k < n.
't'hen prove that

(1) If n has property E(f) and m has property E(g) and n < in, then
&) = g(x) for x C N,,.

(11) In C NI there exists a function such that n has property E(f,)} = N.

Iufer dual f may then he defined by choosing J(n) to be
2.4. An operation * in X is commutative ill a * b = b * a for all a and b in Y.

Prove the following general commutative law. Let * be an associative and
commutative operation in X. 11'1',=2', , a' is a rearrangement of 1, 2,
then a,*a2*

2.5. State and prove a generalization of M4 in Theorem 1.7.
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2.6. Prove the existence of a function k satisfying the conditions of "Theorem
2.3 by imitating the proof of (1) in Lemma 1.2. That is, define L. to be the inter-
section of the collection (i of all sets A, that

(i) AcNXB",
(ii) for each choice of (x2, , x,,) in 11" ', (0, x2, , X,,, c(-x2, , C A,

and
(iii) for each choice of (X2, . , if (X, x2, , Xn, b) C A, then

(x', x2, ..., xn, g(xr, b, x2, ..., xn)) C A.

2.7. Show that multiplication in N, the exponential function, and the fac-
torial function are each primitive-recursive.

2.8. Give primitive-recursive derivations for the functions designated by each
of the following.

(a) ruin (x, y).

(b) max (x, y).
(c) Ix - yl.

0 ifx-(`l)sgx- 1

21
0,

ifx>0.
(e) crn (x, y), the remainder upon division of x by y (see Exercise 1.17).

2.9. Complete tile. proof of Theorem 2.4.

3. Cardinal Numbers

In Section 1 we ignored the role of the natural numbers in counting.
We considered them merely as a set of objects without intrinsic properties
individually and known only through their position in the natural
number sequence. In brief, we considered the natural number sequence
as an integral system. In this section we shall discuss the concept of a
number as a "measure of size" and it will scarcely be unexpected to find
that the natural numbers have an application.

The intuitive connotation of two exhibited sets having the sank num-
ber of urcrnbers is that the members of one can be paired with those of
the other. Since a pairing of the nceinbers of two sets is simply it one-
to-one correspondence: between theme, our basic definition in connection
with the problem at hand assigns a name to two sets so related. Two
sets A and B are similar or equinumerous, symbolized

A - B,
ifi there exists a one-to-one correspondence between A and B. In any
nonernpty collection of sets, similarity is an equivalence relation the
-reflexivity and symmetry are obvious, and the verification of transitivity
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is left as an exercise. '1'ltus it appears feasible to apply the method of
definition by abstraction (Section 1.7) to obtain the concept of a num-
ber as a similarity class. The obvious choice for the set to which to apply
the relation of similarity is the set of all sets. "Then the concept that is
usually called a cardinal number may be defined to be a similarity class.
The modifying adjective "cardinal" is included here to distinguish the
concept under study from another that will follow, wherein not only
magnitude but also order is significant.

It will prove expedient to anticipate now that the set of all sets has a
contradictory character. 'Thus we will be less grandiose and apply the
method of abstraction to a set U which we regard as a universal set;
that is, all sets which interest its are subsets of U. 'Then similarity is an
equivalence relation on 6'(U) and by a cardinal number we shall
mean a similarity class. If A C 61((I), tile cardinal number of A,
symbolized

A or card A,

is the cardinal number having A as a meniber. At time expense of a
possible loss of generality entailed by the dependence on an underlying
universal set, we achieve a degree of precision that is lacking in Cantor's
description of a cardinal number as "the general concept which, with
the aid of our intelligence, results from a set Ad when we abstract from
the nature of its various chcrnents and from the order of their being
given." This double abstraction- that is, the abstraction with respect to
the nature and the order of the elements- is the origin of his notation M
for the cardinal number of Al.

There are other definitions of "cardinal number" which have been
adopted by differcnt authors. G. Fregc (1884) and 13. Russell (1902)
identified the cardinal number M with the set of all sets similar to
Al. On the other hand, J. von Ncuinann (1928a) suggested the selection
of a fixed set C front the set of all sets similar to Al to serve as cardinal
of M. With any one of these definitions one obtains what is essential---
that all object is associated in common with those and only those sets
which are similar to each other. That is, similar sets and only similar
sets have the same cardinal number. It can be successfully argued that
for mathematics it is immaterial as to what cardinal numbers are,
explicitly, so long as they have the property A = 13 iff A ti B. Indeed,
by virtue of this property, we shall find that all questions regarding
equality and inequality of cardinals can be reduced to questions of the
similarity or nonsimilarity of sets. That is, any property of cardinal
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numbers, however they be defined, can be translated into a property
about sets and their similarity.

In order to compare cardinals we define the notion of domination for
sets. If A and B arc sets such that A is similar to a subset of B, we shall
write

A { B

and say that A is dominated by B or that B dominates A. Clearly this
is a prcordcring relation (see Example 1.11.5) in the power set of the
universal set we have adopted for our discussion of cardinal numbers.
in the terminology used in the same example, it is obvious that < is
indifferent to a pair of similar sets. The converse statement (which is
not obvious) is also true; this is the content of Lite following celebrated
theorem proved independently by E. Schriider and F. Bernstein in
the 1890's.

TIIEOREM 3.1 (Schriider-Bernstcin Theorem). If A B and
BA,thenA''B.
Proof. First we offer some remarks to motivate the proof which
follows. The assumptions amount to the existence of a one-to-one
map f on A into B and a one-to-one rnap g on I3 into A. To establish
the. existence of one-to-one correspondence between A and B, it is
sufficient to determine a subset At of A such that g[B - fAt] _
A - At. For then the function h: A B such that

hx = fx for x C A,,
hx=g'x forxCA - A,,

is of the type desired. Concerning a method for constructing any
subset Ao of A which could serve as an At, clearly A should include
A - gB. Also, since g [B - fAo] should include A - Ao, (g f)Ao
should be included in A0. In addition, since we actually want
g(B - fAo] = A - Ao, the smallest such All is required. Thus we arc
led to consider the collection d of all subsets Ao of A such that

(I) A - gB C A0, and
(11) (g ° f )Ao C Ao.

Since A C a, a is noncmpty. As At we choose (1(t;. Clearly A, satis-
fies (1). Moreover, since (g o f )A, C (g o f )Ao C Ao for all AO in a,
(g o f)A, C net= A,. Hence A, satisfies (11) and is, consequently, a
member of a and, indeed, its least member.
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The proof that the set A, just defined has the required property i'
in two parts. First, since A - g13 C A,, A - A, C gB. This implies,
since (g ° f)A, rA,, that A - A, C gjB - fA,]. To establish the
reverse inclusion we prove first that

(A - gB) U (g A,.

Since A, C tt, A - gB C A, and (g ° f )A, e A, and hence (A - g13)
U (g °f)A, g Al. Also (g -f) [(A - gB) U (g °f)A,l c (g °f)A,, from
which it follows that (A - gB) U (g ° f)A, C a. Recalling the defini-
tion of A,, the equality in question then follows. But this implies that
A. and g[li - fA,] are disjoint, so g(ll - fA,J A - A1. Hence
g I B - fA,] = A - A1.This completes the proof in view of our initial
remarks.

Combining the observations made so far, it follows from the result
obtained in Example 1.11.5 that induces a partial ordering of sim-
ilarity classes, that is, of cardinal numbers. We shall symbolize this
relation by < ; thus, for cardinal numbers a and b,

a < b
ifl' there exist representatives A and B of a and b respectively, such that
A < B. The strict inequality of cardinals is defined in arithmetical
fashion :

a <b
ill' a < b and a b. In order to characterize this relation in terms of
representatives we define

A < 13

for sets A and B to mean that A < B and not 13 < A (abbreviating "it is
not the case that B;< A" to "not B;< A"). The second of the following
two leimuas is the desired result. '1'he proofs are left as exercises.

LEMMA 3.1. For sets A amid 13,A < A < B.

1. FM M A 3.2 . For cardinal numbers a and b, a < b ifl there exist
respective rel)reseutatives A and 13 such that A < 13.

Is the pal tial ordering relation for cardinal numbers a simple order-
ing? To analyze this question let a and b be cardinals and assume that
A = a and f3 = b. 'I'llcn either A is dominated by 13 or not. Vice versa,
either 13 is dominated by A or not. Combining these two pairs of
alternatives gives four cases, exactly one of which must apply to A and B.
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(1) ANBandB<A.
(II) A B and not B A.

(III) Not A B and B A.
(IV) Not A < B and not 13 A.

In case (I), a = b according to Theorem 3.1. In case (II), a < b and
in case (II1), b < a according to Lemma 3.2. It is only case (IV) that
cannot be resolved with results that are available now. Later there is
introduced an assumption which rules out this case. At that time we
may conclude, as a consequence, that < is a simple ordering relation.

Our next objective is to show how the familiar symbols for the natural
numbers can be adopted as symbols for the cardinal numbers of certain
sets, or, what amounts to the same, we make an application of the natural
numbers in which they become cardinals. To this end we make the
following definitions. The cardinal number of the empty set we call 0,
and the cardinal number of any set A U (c}, where c iZ A, we call
.q + 1. It must be proved that these concepts are well defined in terms
of our basic principle: A = P if A Clearly 0 is well defined since
the only set similar to 0 is itself. That A + I is well defined is shown
as a consequence of the following result, whose proof is left as an exer-
cise. I f A U { c } N B and c (, A, then B = Bo U Id l where d (4 B0 and
B0 A. From this it follows that if B - A U Ic} where c (Z A, then B
determines the cardinal number 130 + 1, which is equal to A -J- 1 (that
is, A V qccf) since 730 = A. The converse is trivial by virtue of the
definition of A + 1.

The two definitions just given -together with the understanding that
in case A = n, a natural number, then A --A- 1 = n + I should receive
its usual symbol, such as 4 + 1 = 5---lead to an assignment of each
natural number as a cardinal number for certain sets. The natural
numbers in the role of cardinal numbers are the finite cardinals, and
sets which have these cardinals are finite sets.

In their new role as cardinals, the natural numbers are subject to the
ordering of cardinal numbers generally, as defined above, following
Cantor; this ordering we write temporarily as <c. In their original
role as members of N, the natural numbers possess the familiar ordering,
which we write as < N, for the moment. If it were the case that these
two orderings did not coincide on N, a confused situation would result.
That they are in agreement on N and thereby no awkwardness results,
can be proved after two preliminary theorems are established.
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THEOREM 3.2. For each natural number n, the finite cardinal n

is the cardinal of the set of natural numbers which precede n in the
natural ordering.
Proof. The proof is by weak induction on it. If n = 0, there are no
natural numbers preceding n in the natural ordering, and hence the
set referred to in the theorem is 0 and 0 = 0 by definition. Thus
the theorem is true for it = 0.

Assume that n = card 10, 1 , - , n - 1 } ; to prove that n 1

card 10, 1, - ,n}.Since n(Z
{0, ,n - 1,n} 10, 1, ,n - 1} U fit),

we have it + I = card 10, 1, , n} by the definition of A ± 1.

THEOREM 3.3. For each natural number n, if it = n, then A is
not similar to a proper subset of itself.

Proof. We shall prove by weak induction on n that for all n C. N,
if A = n then it is false that A r., A, C A. For n = 0, A = 0 and
A = 0. Then A has no proper subsets and so no proper subset of A
is similar to A.

Assume the theorem for any set of cardinal number n; we prove it
for a set A with A = n + 1. Our method of proof calls for obtaining
a contradiction of the induction hypothesis upon assuming that A
does include a proper subset A, such that there exists a mapping f:
A -- A,, which is one-to-onr and onto. Since A = n -4-- 1, A = B U (b}
where 21 = it and b (Z B. There are three possibilities to consider.

(I) b (Z At. Then b f(b) and we conclude that the restriction
of .j to I3 is a one-to-one correspondence between B and
A, - If(b) {_ where the latter set is a proper subset of the for-
mer. Since 1) = n, this contradicts the induction hypothesis.

(I1) b C A, and f(b) = b. Again f IR yields a contradiction of the
induction hypothesis.

(III) b C At and f(b) : b. Let f(b) = b, and f-'(b) = a. Then
consider the snapping g: A -- Awhich differs from f only
in that g(b) = b and g(a) = bi. Clearly g is one-to-one and
onto and is the type of correspondence. considered in (11).

'T'hus in all possible cases a contradiction of the induction hypothesis
results from time assumption that if A = n + 1, then A is similar to a
proper subset of itself. Hence, if the assertion of the theorem is true
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for sets of cardinal number it, it is true for sets of cardinal number
n+1.

TII L' OR.EM 3.4. The natural ordering and the cardinal ordering
agree on N. That is, for all natural numbers p and q,

q<Np if q<cp.
Proof. We shall prove first that if q <N p, then q < e p. Let P =

p - 1 } and Q = {0, 1, , q - 1 } (or 0, if q = 0). Then
7' = p and Q = q. Assuming q <N fi, each of 0, 1, , q - 1 precedes
p - 1 in the natural ordering, so P = {0, 1 , . - , q - 1 , , p - 1 }.
'I-bus Q C P, and since Q - Q we have Q N Q C P. Further, for no
Qo is P - Qo S Q, since otherwise it would follow that P is similar
to a proper subset of itself, contradicting Theorem 3.3. Nonce q < c p
by Lemma 3.2.

Next, assume that q < c p; we deduce that q < N p as follows. Since
<n simply orders N, it suffices to show that q = p and p < n q are
incompatible with our assumption. If q = p, then Q = 1' and so, as
cardinals, q = p = Q = P, which is incompatible with q < c p. If
p <N q, we apply the first part of the theorem to conclude that p <c q,
which is incompatible with the assumption that q < c p.

We turn our attention next to the nonfinite cardinals. A nonfinite
cardinal is an infinite or transfinite cardinal. If the cardinal number
of a set is infinite the set is called infinite. The cardinal number of the
set of natural numbers is symbolized by

bto.

TI!EOREM 3.5. If n is a finite cardinal, then n < bto

Proof. Since it = card 10, 1, , n - I } by'f'licoreni 3.2, n < Ko by
the definition of < for cardinals. Assume that n = bto. Since n + I is
also a finite cardinal, we conclude similarly that it -} 1 < Ko, which
with it = Ko gives n + I < n. Since this contradicts the valid result
it < n -}- 1, the assumption n = btu is untenable and the remaining
alternative n < bto is established.

Thus Ku is an infinite cardinal. So, along with the finite cardinals, we
now have an infinite one. If it were the case that all infinite sets were
similar, so that Ko would be the only infinite cardinal, the theory of
cardinal numbers would contribute nothing to mathematics not already
known, and hence would scarcely be worthy of mention. That more
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than one infinite cardinal exists-that is, that there exist infinite sets
which are not similar---is an immediate consequence of the next theorem.

TII EOR E M 3.6 (Cantor). For every set A, A < (P(A) or, in other
words, f1 < CP(A).

Proof. The mapping on A into a'(A), which takes a in A into {a} in
?(A), is a one-to-one mapping on A into (P(A). Thus, A <cP(A). To
prove that A -< a'(A), we show that the assumption A - a'(A) yields
a contradiction. Let f : A -} (P(A) demonstrate the assumed similarity
of A and a)(A) and consider A, = {a C Aja (Z f(a) }. Since A, C (3)(A),
there exists a, in A such that f(a,) = At. Now either a, C A, or a, (Z At.
If a, C A,, then a, f(al) and hence a, (Z A,, which yields a contra-
diction. Similarly, a, (, A, implies that a, C f (a,) oral C A,, and again
a contradiction results. Thus we have proved that A < (P(A) and not
A' (P(A). This gives the desired conclusion.

Cantor's theorem uncovers a hierarchy of distinct infinite cardinals.
Just as the set of finite cardinals is unending, so also is the set of infinite
cardinals of the form

N = Ho, v(N), a'(n'(N)), ....
(However, this is not the end of the matter,] as we shall see in Theo-
rem 9.2.)

EXERCISES
3.1. Show that similarity is an equivalence relation on any collection of sets.
3.2. Show that < is a preorderiug relation.
3.3. The closed unit interval, written 10, 11, is (x C R10 < x < 1). The open

unit interval, written (0, 1), is (x C RI0 < x < 1). The half-often unit intervals,
written (0, 11 and 10, 1), are {x C 1110 < x < 1) and (x C RIO < x < 1),
respectively. Show that these sets are similar to each other.

3.4. Using the function f: R --)-- R, where

f(x)=2(1+1+1xi)'
show that R is similar to (0, 1).

3.5. Show that R and R-1 are similar.
3.6. Referring to the proof of Theorem 3.1, what is the function h if A =

[0, 1), B = K1, f(x) = x + 1, and g(x) = x/(1 + x)?
3.7. Prove Lemmas 3.1 and 3.2.
3.8. Deduce from Theorem 3.1 that if A, B, and C are sets such that A

B?CandA.C,then A-B'C.
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3.9, Prove that if A?Band B -BUC,thenA - AUC.
3.10. Prove that if A, B, C, and D are sets such that A 1) C, B C I), and

C U D ^ C, then
3.11. Prove the result stated in the text that if A U {c} ti B and c (Z A, then

B = Bu U {d} where d (Z Bo and Be N A.
3.12. Let X be a set which is similar to none of its proper subsets. Without

using any theorems in this section, prove that the same is true of X U (a)
where a (z X.

3.13. Of the given definitions of a finite set and of an infinite set, we have
taken the former as primary; the infinite sets are the nonfinite sets. Dedekind
proceeded in the complementary way by initially defining an infinite set as one
that is similar to a proper subset of itself; then the finite sets are the noninfinite
ones. Show that a set which is infinite in the sense of Decekind is infinite in our
sense. The converse can be proved, using the axiom of choice; see Corollary 2
of 't'heorem 9.1.

3.14. Tarski (1924) has given the following definition of a finite set: The set
S is finite if in each nonempty collection 3 of subsets of S there exists one mern-
ber 7' such that no proper subset of T belongs to 3. Prove that this definition
is equivalent to that in the text.

3.15. Let If be a nonempty collection of sets such that for each A in CF there
exists it 11 in 9 with B > A. Prove that card U;F > A for each A in F.

4. Countable Sets

The smallest infinite cardinal number that we have turned up so far
is No. A surprisingly large variety of sets in mathematics have this
cardinality, as we will proceed to show after introducing some further
terminology.

A set is denumerable if it has cardinal number No. A set is countable
if it is either finite or denumerable. An enumeration of a denumerable
set A is a specific one-to-one correspondence between N and A.

EXAMPLES

4.1. Among infinite sets of numbers which are denumerable we mention first
Z, the set of all integers. The following enumeration shows this:

f : IV __ '!, where An) (n -l. 1)/2,
{

n = 1, 3, 5,
- n/2, n = 0, 2, 4,

4.2. More surprising, the set Q of rational numbers is denumerable. This
result follows easily once it is known that Q,', the set of positive rationals, is
denumerable. Indeed, if a one-to-one correspondence g: Z4 n 1 is given,
then it may be extended to a one-to-one correspondence g* between I and (.



suotlenba Ile J° slow se Jn33o slagwnu 3te1ga912 leaf JO 13gwnu 31iuy a Aluo 

72(11 apn13uO3 am 'wool 1e31 r lsow 1e s24 ! x3put Jo letuw(Xlod U3n1dc 2 1e1I1 

13'J Dill (13!M still SututgwoD IYvl AJ3,na put, : j u asneoaq sirtulou (l0d 

jo J3gwnu 31!uy 2 Aluo ,(q pass3ssod st : xapur awes Dill 'I2.taua;I ul -xz 
'I + x'zx 312 £ xapur Jo sletwowtlod DILL x'Al3weu 'Z xaput Jo letwou,t1od 3110 

dluo sI 3J3gy Z 1se31 le si lenuouXlod Aue jo x3put a41 ' I < ov put I u 33111S 

1'VI + ... + ItnI + ov + u 

aagwnu 121n12u 341 lueaw s! (x)J {eiwouAlod 341 Jo z x3pUt 3r11 AQ os op Ile4ls 

3M PUB 'WJOJ 3A0g2 341 JO uotlenba U2 ut I < °D 1241 Suiutnssu ui A1IIe13u3;J JO 

ssol ou st 3J3y1 still lo,4 swsdns paJ3p10 31tuy olut N 3ptntP o1 -jooid anoge st4 

SL ulalled 3UIL'S 341 sMOIIOJ 3Ige13wnuap Si V 1241 Moils o1 3nbtugpal s,1o1u2;) 
J3do1d sr uotsnput Dill 'rluo+1211+ ail o1 uMOU)1 st g3IIM laclwnu oiu.LgJSIe 

Ie31 2 si `0 = Z - x Jo 1001 a se `zII 3311's 'V 5 25 `0 = 1 - xs Uo+l2nb.) Dill 

Jo 1001 a st s/1 13gwnu leuotlel Dill 33uts 13S31Ut ue s 1U3P!J3o3 gaea a1-AIM 

90 / °D '0 = °v + ... + t-..xlv + xov = (x)f 

suorlenba it,tw0u,<10d lie Jo slooJ 1'31 Ile Jo 13s 341 st 

still 'uoillul 3p A8 algel3unur3p st slagwnu 3te4gA{e lra1 Ile JO V 13S 3n!SU31x3 

310W 341 1281 3no1d 01 sllodand SuoilellSuowap 9,101Ue;) JO J3gl0UV 
+') PUB 17 u33M13c1 aauapuodsaJloa 300-Ol-Duo e 

slStxa a.3rl1 12111 1u3W3121s Dip algtsnsld 3)lew A1-.).taw slu3wn;312 ;IuIo83JOJ 341 
'uog3unJ 2 Jo uOtlIuIJap 1no Al sino 3011 pue pJOM 3ql jo a82sn st4 312311)iu 01 

svew uonelonb ui anoge 6,uopejautnu3,, p1oM 341 lnd 3A24 3M PUB 'lolue;) 
01 Drip st U011e11suow3p S!lIL Jo 1uotlel3uinu3,, Ue st '/ClsnOtn3.ld 

Quo 01 lenb3 312 93tgM suo+l38JJ aso41 Jo u0g3I3p uodn s1111S3J 1.131+IM '3Aog0 
Q'I1 Jo 33uanbasgns 3q l A11U3 (Z - s + 1) (I - S + 1) I] 341 St s/1 3J3IJ 

`t/17 'z/£'£/z'b/1'1/£'z/z'£/I `I/z `z/1 `I/I 
se paSue11e st Auldsip p3123t13 

-Ut 391 'si 1211.3, utunlo3 lsag a41 01 Mo1 1SJy 341 wo1J sl2uo;ietp 2uipU2dx3 JO 

33U3nb3s 341 SUIMO1loJ Aq p3ulelg0 Si SJ3gUIt+U 35341 JO ,UO1le13wr1U3,, Ue Uarly 

v/I7 £/i Z/17 1/17 

$7/£ £/£ Z/£ 1/£ 

t'/Z £/Z Z/z 1/Z 
i,/1 0/I . Z/I 1/I 

52 aueid-JalJenb 2 
u+ (suotpt13(133 9l!M) padeldstp 312 b Jo sl3gwaw at.11 12+11 aut;Iewl sMOIIOJ se 

5302 31rre13runuap si is le91 JooJd aarptnjue pjupuuls V j Pu2 !`l u3JMlaq 33113 

-puodsa.uoa 3UO-01-300 a St '3n)(I2 p3UiJ3p st f 3J3gM'Jo U39.L 1y ,(g b/t/ 0100 
Padd2w sI yJt b Ut (b/({)- o)UO 7 uI fir- pU2'5 Ur 0 o1UO L ut 0 8u!Idew Aq 

Z ' d V 110 
I 

S'uOl7UZr1DAJlla9 spr put) aiuanba5 idglunAr j°lnJDN M .L 88 



2.4 1 Countable Sets 89

f(x) = 0, where f(x) has index i. By assigning to i the values 2, 3, 4, , in
turn, and listing the new algebraic numbers obtained at each step in sonic
order, there results an enumeration of the distinct algebraic numbers. No alge-
braic nurn'.ber escapes being assigned to a natural number since every poly-
nomial has an index. Beginning terms in one such enumeration are

0, -1, 1, -2, -a, of 2, -3, 12 (1 - 51/2), -2h12, -a . 2" , ....

As in the case of Q', this type of argument makes it plausible that A is denumer-
able. To put such matters on a firm footing, we need to prove some theorems.

THEOREM 4.1. A subset of a countable set is countable.

Proof. By definition, if A is countable and not denumerable, then
it is finite. If B C A, then 71 < fl, so V is finite and B is a finite and
hence a countable set. Next, suppose that A is denumerable; let
f : N -} A be one-to-one and onto. If B C A, then the restriction off to
f-'[B] is a one-to-one mapping on a subset of N onto B. If we can
show that f--'[BJ is countable, then a one-to-one mapping onto B
can be constructed by composition. Thus the proof reduces to showing
that an arbitrary subset C of N is countable.

To prove this, let g(O) be the first member of C. Proceeding induc-
tively, for n in N, let g(n + 1) be the least member of C different from
g(0), g(1), , g(n). If this is impossible for some n, then g is a func-
tion on 10, 1, , n) onto C, and C is finite. Otherwise, according
to Theorem 2.4, there is a function g on N into C such that for
each n in N, g(n) is the least number of Cdiferent fromg(0), g(l), ,
g(n - 1). Clearly g is one-to-one. It remains to show that its range
is C. For this we point out that g(n) > n for all n; the proof is left as
an exercise. Consequently, each number c in C is one ofg(0), g(1), ,

g(c). Thus g is onto C.

TIIEOREM 4.2. If the domain of a function is countable, then its
range is also countable.

Proof. As in the case of the preceding theorem, the proposition now
at hand can be reduced to the case of a function whose domain is a
subset of N. So consider f: A -. 13 where A _C N and B is the range
off. It is to be shown that B is countable. Let C be the set of all mem-
bers x of A such that if y E A and y < x, then f(x) f(y). That is, C
consists of the least member of each of the sets f ''(b) for b in B. Then
fIC maps C onto B in a one-to-one manner. Since C is countable by
Theorem 4.1, so is B.
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TI-1 E0 RE M 4.3. N X N is denumerable.
Proof. t Let f : N X N ->- N, where f (m, n) = (m + n) (m + n + 1)
{ 2m. Then f is one-to-one. For assume that f(m, n) = f(m, n); that is,

(m +n)(m +n + l ) +2m = (m +n)(m +n + 1) + 2m.
Setting x = m + n and z = m + n, this becomes

x(x + 1) + 2m = z(z + 1) ± 2m.
Now exactly one of x < r, x = x, x > z holds. Assume that x < T.
By A4 of 'T'heorem 1.5, x = x + d + I for some d in N. After substi-
tution in the above equation and simplification, one finds that

z(z+1) =x(x+1)+2x(d+1)+(d2+3d+2),
and hence

z(x + 1) > x(x + 1) -f 2x.

Since x = m + n implies that x > in, it follows that

x(z -I- 1) > x(x + 1) -I- 2m,
and hence

R(x+1)+2m>x(x+1)+2rn,
contrary to the assumption that f(rn, n) = f(m, n). The assumption
that z < x leads to a similar contradiction. It follows that x = z,
and hence, in turn, m = m, n = n, and (rn, n) = (m, Ti) as desired.

Let A he the range off. "Then f -I maps A onto N X N in a one-to-
one manner. By 't'heorem 4.1, A is countable and hence, by Theo-
rem 4.2, N X N is countable. Since N X 101 is a denumerable subset
of N X N, it follows that N X N is denumerable.

CORO1,1,AItY. If X is a denumerable set, then so is X X X.
More generally, if n is a natural number, then X"'' is den"InCrable.

The proof is left as an exercise.
f 'T'he proof is adapted from Rosser's Logic for Mathematicians, p. 439. if we felt free to use

rational numbers in our proofs at this point we would set f (rn,n) = -z(nt -I- n)(m + n + 1) + in.
This is precisely the enumeration of IN X N which results fioni arranging the elements in
a sequeucc by proceeding clown the successive diagonals in the display

(0, 0) (0, 1) (0, 2) (I), 3) ...
(1,0) (1, 1) (1, 2) (1, 3) ...
(2.0) (2, 1) (2, 2) (2, 3) ...
(3,0) (3,1) (3,2) (3, 3) ...
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EXAMPLE
4.4. Using the preceding theorem, the denumerability of the positive

rationals can he established. Clearly, the function f, such that f(m, n)
(m -} 1)/(n 1) maps N X N onto Hence Q} is countable by Theorem
4.2. Since 0,+ has a denumerable subset, it is not finite, and hence it is de-
numerable.

THEOREM 4.4. If a is a nonempty finite collection of denumer-
able sets, then Ua is denumerable. If (t is a nonempty finite collection
of countable sets, then Ua is countable.

Proof. The proof of the first statement is by weak induction on n
where n + 1 is the number of members of a. For n = 0 the result is
obvious. Assume that Ao U At U U A. is denumerable when each
Ai is denumerable and consider Ao U Ai U U A. U where
each Ai is denumerable. Since

AoU A,U ... UA.f.r = (A0UA,U ... UA.) UA.+j,
the induction step is established as soon as it is known that if A and B
are denumerable then so is A U B. We prove this now.

Assume that A and B are denumerable. 't'hen there exists a function
f. mapping N X {0} onto A in a one-to-one manner and a function f,
mapping N X11 ) onto B in a one-to-one manner. Then f = Jo U f,
maps N X 10, 1) onto A U B. As a subset of N X N, N X 10, 11 is
countable, and hence A U B is countable by Theorem 4.2. Since
A C A U B, the union is actually denumerable.

The proof of the second statement in the theorem is left as an
exercise.

There is a rather obvious possibility for extending the method used
above to prove that if A and B are denumerable then so is A U B. This
is to prove that the union over a denumerable collection of denumerable
sets is denumerable, and proceeds as follows. If a is a denumerable
collection of denumerable sets, then there exists a function g on N
onto a. Since, for each n in N, g(n) is denumerable, there exists a func-
tion f on N X fit } onto g(n) for each it in N. Then f = U { f I n C N }
is a function on N X N onto Ua. Applying Theorem 4.3 and Theorem
4.2 we conclude that Ua is countable and, actually, denumerable.
But there is an argumentative point involved in this reasoning. To ex-
plain it we define F,,, for n in N, as the set of all functions on N X { n }
onto g(n). By hypothesis, F. is nonempty for each n in N. Also, the Fn's
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are disjoint in pairs. 'T'hus, in (fnI n C N) we have a set of functions with
exactly one from each member of the family ( F jn C N). Now---and this
brings us to the heart of the matter C N) is not a defined set
until f, is uniquely specified for each n. In general, there is no procedure
to attain uniqueness. In effect, what we did to arrive at. (j In C N)
was to assume that one can choose a unique member of each of the
That is, we employed the. (denunicrablc) axioirt of choice, a principle
which, beginning in Section 8, we officially accept. In Section 8 the
principle and its ramifications are discussed in detail. It will involve us
in no circular arguments and there will incur certain advantages to
accept the above proof now. It is left as an exercise to supply the neces-
sary modifications for the version that we state next.

THEOREM 4.5. If a is a countable collection of countable sets,
then U a is countable.

Our principal reason for the acceptance of this theorem now is that
it implies the following result: Any set which can be formulated as the
union of a countable collection of countable sets is countable. Hence,
any set which can be divided into a denumerable collection of countable
sets is dcnurnerable. For instance, the set of all real algebraic numbers
is denumerable. Again, the sarric is true of the collection of all finite subsets
of N. It should be at least mentioned, however, that the dcnumcrability
of each of these sets can be established without using the axiom of choice.
Further examples of denum crable sets appear among the exercises for
this section.

To say that a set is uncountable means that it is infinite and non-
dcnumcrablc. We have already noted, as an application of Thcorens 3.6,
that card 61(N) > No, so 6'(N) is an uncountable set. We shall denote.
card 6'(N) by

According to the result stated in Example 1.8.7, 6'(N) ti 2H, the set of
all functions on N into 10, 1) or, in other words, the set of all infinite
sequences C N} where an = 0 or a = I for each n. Consequently,
2N is an uncountable set. It is instructive to give a direct proof of this
fact by the classical Cantor "diagonal" procedure. This is a process for,
deriving, tinder the assumption that an enumeration of a set is given, a..
member different from all those in the enumeration. '[Isis, of course;.
renders it absurd that the given enumeration is one of all members of the
set. So assume that an enumeration of 2"- is given. Since each member of
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2r-'

2N

93

is a sequence of 0's and l's, it is possible to indicate all of
in a table of the form,

arn,, am, a02,

a,0, all, a12,

ago, all, a22, a;j = 0 or I

Now consider the sequence {1 - an C NJ. Clearly this sequence is
in 2'ti and is different from each of the above, since it differs from the
ntl member in the nth place. Thus the enunicration is riot exhaustive
and this is the desired contradiction. We state this result as our next
theorem and also provide a compact proof.

THEOREM 4.6. 2N- is an uncountable set.

Proof. Assume to the contrary that there exists a one-to-one cor-
respondence f between N and V. Then a:N -* 10, 11, where a _
1 - f (n),,, is a member of 2". But a 7 f (n) for all n because a,,
Thus the enumeration does not exhaust 2".

EXAMPLE

4.5. We assume as known the following property of the real number system.
Each real number x; 0 < x < 1, has an r-adic expansion Fi n;r-', where r is a
natural number greater than 1 and n; is an integer such that 0 < n; < r - I;
this expansion is unique unless x is a nonzero number of the form nr ', in which
case there exists exactly two expansions, one finite and the other infinite. For
r = 2 we obtain the dyadic expansion of x:

x = .a1a2 , a; - 0 or 1.
This representation is unique if we agree to always use the infinite one when-
ever a choice exists. Defining C to be (x C i 0 < x < 1), it follows that
cc 211 and hence C<bt.

On the other hand, using the decimal expansion (r = 10) for the numbers of
C, the subset of C consisting of those numbers having expansions composed
exclusively of 3's and 4's is similar to 2N. Thus bt < C. By Theorem 3.1 it
follows that

Each finite cardinal n has an successor, n -}- I. This
fiuggcsts the question of whether too also has this property. One candidate
for the immediate successor of tjo is rt. The question of whether H is the
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smallest cardinal greater than No is known as the continuum problem.
This terminology suggests that < simply orders any set of cardinals,
which we shall prove later, and that the answer is not as yet known,
which is a fact. Since N is the cardinal number of 11 (this appears among
the examples for this section), the problem may be formulated as the
query: Has every infinite subset of R either the cardinal number No or
N? It has been discovered that a number of theorems, some of them
important, can be based on the hypothesis that the answer to the con-
tinuum problem is in the affirmative. This conjecture is known as the
continuum hypothesis.

EXERCISES
4.1. Supply the missing part of the proof of Theorem 4.1-n arnely, that

g(n) > n for all n.
4.2. Show explicitly that the proof of 't'heorem 4.2 can be reduced to that

of a function whose domain is a subset of' N.
4.3. Prove the Corollary to 't'heorem 4.3.
4.4. Prove the second statement in Theorem 4.4.
4.5. Assuming that the union of a denumerable family of denumerable sets

is denumerable, prove'I'heorem 4.5.
4.6. Show that N can be represented as a union of a denumerable family of

denumerable disjoint sets.
4.7. Give an intuitive proof that any infinite set includes a denumerable

subset. From this deduce that (1) No is the least infinite cardinal, and (II) an
infinite set is similar to a proper subset of itself.

4.8. Show that any set of circles, no two of which overlap and all located
within a fixed circle in the plane, is countable.

4.9. Show that U?-,(ZI)" (the set of all ordered n-tuples of positive integers
for n = 1, 2, .. ) is denumerable by mapping (ri, r2, , Ti) onto 2" 3r'

pk , where Pk is the dth prune.
4.10. Show that the set of all complex algebraic numbers (tile roots of poly-

nomial equations having integral coefficients) is denumerable.
4.11. Show that the set of real numbers in the closed unit interval having a

decimal expansion which ends in an infinite sequence consisting solely of 9's is
denumerable.

4.12. Prove that the set of all infinite sequences of natural numbers is un-
countable.

4.13. Prove that the set of all finite sequences of rational numbers is de-
numerable.

4.14. Show that if 1) is a denumerable set of points in a coordinate plane,
then D is the union of two sets Ds and 1.)., let us say, such that the intersection
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of D= and each line parallel to the x-axis is a finite set, and the intersection of
D,, and each line parallel to the y-axis is also a finite set.

4.15. Prove that the set of all straight lines in a coordinate plane, each of
which passes through at least two distinct points with rational coordinates, is
denumerable.

4.16. Let A, B, and C be sets such that C C A, A fl B = 0, and B and C
are denumerable. Prove that A U B ti A;

4.17. Deduce from the preceding exercise that a set which contains a de-
numerable subset is similar to the set obtained by adding to it a denumerable set.

4.18. Deduce from the preceding result that if A is uncountable and B is
denumerable, then A - B is uncountable.

5. Cardinal Arithmetic

In this section we shall define the operations of addition, rnttltiplica-
tion, and cxponentiation for arbitrary cardinal numbers, and sketch
briefly the properties of each. It will be left to the reader to convince
himself that these definitions, when applied to the finite cardinals for
which we have found it possible to use the natural numbers as labels,
are in agreement with those fir addition, multiplication, and exponentia-
lion of natural numbers. Thus the definitions given below are exten-
sions of those for natural numbers.

The sum, it 4- v, of the cardinal numbers u and v is A U 13, where A
and I3 are disjoint representatives of u and v, respectively. (The required
disjointness can always be realized by replacing, if necessary, given
representatives A and I1 by A X {01 and B X 111.) It is iinnit-diate
that the definition of the sum it + v is independent of the choice of
representatives for it and v. Moreover, it is an easy matter to verify the
properties stated in the following theorem.

TI I E O It E M 5.1 . For cardinal nutnl)ers u, v, and rv,

(I) u+v =V+u,
(11) u+(z+w) = (u+v)+w,

(III) u < v itnplies u + w < v + rv.

The proof is left as an exercise.

The product, uv, of the cardinals u and v is A X B, where A and B
are representatives of u and v, respectively. This definition is independent
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of the choice of representatives for u and v. Multiplication has the prop-
ertics listed below.

TIIEOR EM 5.2. For cardinal numbers u, v, and w,

(I) uv=vu,
(I.I) u(vw) = (uv)w,

(III) u <vimplies uw <vw,
(IV) (u-}-v)w = 11w-1-vw.

The proof is left. as an exercise.

Properties of addition and multiplication of infinite cardinal numbers
lose much of their interest as a consequence of a theorem which will
be proved later, using the axiom of choice. This theorem asserts that
the sum or product of two cardinals, at least one of which is infinite,
is simply the greater of the two. Important instances of this result can
be proved without appeal to this axiom, however. Several results of
this kind follow.

EXAMPLES
5.1. If n is a finite cardinal, then

n -l-

since n -l- Ro = card {0, 1, , n - 1} -I- card In, n

Ko A- No = MO

since card {1, 3, 5, } + card {0, 2, 4, . } = N.

+ 1, ... } _ N ; also,

5.2. n4o = Mo and MoNo = Ro

are true by virtue of 'I'heercin 4.4 and Theorem 4.3. It is left as all exercise to
show that, similarly,

5.3. The relation

may be established as follows. Using the open unit interval S, as a representative
of M (see Exercise 3.4), the product MR may be represented as the set Sz of all
ordered pairs (x, y) of real numbers x and y, such that 0 < x, y < 1, that is, the
interior of the unit square in the plane. If x and y are written in decimal nota-
tion (where, to achieve uniqueness, the infinite expansion is chosen when there
is a choice), then the correspondence

(x, y) = (.x,x2 ... yj y2 ...) - .x,y,x2y2 .. .
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is a one-to-one mapping on S2 into S1, so S2 < St. But ,Si < ,S2 by virtue of the
correspondence x --s` (x, Z). Thus the assertion follows.

't'urning to the operation of exponentiation, if u and v are cardinals,
the Uth power of u, in symbols u", is card A° where A and B are repre-
sentatives of it and v, respectively. The independence of this definition
upon the representatives for u and v is easily verified, as are the following
properties of exponentiation.

THEOREM 5.3. For cardinal numbers u, v, and w.

(1) u"u'° = u" I-,
(II) (UV)" = u"'Ui°,

(III) u

(IV) u' = u and 1u = 1,
(V) u<vimplies w"<w",

(VI) u < v implies u'° < U"'.

Again the proof is left as an exercise.

Since al(A) ti 2A and 2" is an abbreviation for (0, 11 A, it follows from
the definition of exponentiation that

a'(A) = 21.
Thus, in particular, we may now write

I,'t = 2u0.

Also, if u is a cardinal and n is a finite cardinal, 4" may be given its
familiar interpretation, since, from (I) and (IV) above,

u" = U1 III u' = uu . . . u. (n factors)

In particular, recalling the definition of A" in Section 1.8,

An = (j)n

EXAMPLE
5.4. The following are sample computations which may be carried out with

cardinal numbers, using exponentiation.

bt2 = (2N°)2 = 22tt° = 2't° = I't
Wt°_ (2N')tt°=2't°'=2et°_Lt
H = 2't° < t'tu ° < Mtt° = (`t, and hence t`tu ° = Id.
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EXERCISES
Note: The results of Exercises 1.9.13 1.9.16 should be used whenever pos-

sible in the proofs required in these exercises.
5.1. Show that the definition of the suin u + v of two cardinals u and v is

independent of the representatives used.
5.2. l'i ove Theorem 5.1.
5.3. Prove 't'heorem 5.2.
5.4. Prove that nK = &rj = tj for n C N and n 0 0.
5.5. Show that the definition of u° for cardinals u and v is independent of the

representatives used.
5.6. Prove Theorem 5.3.

6. Order Types

The theory of similarity of sets and cardinal numbers ignores the
possible existence of an ordering relation on sets under consideration.
Indeed, in the language of Cantor, one arrives at the notion of a cardinal
number by an abstraction from the nature of the elements of sets and
from any existing ordering. Taking orderings into account, similar sets
may show much diversity. This contention is illustrated by the similar
sets N and Q with their familiar orderings; N has a least member and
(Q does not. Further, each member of N has a covering element while
no member of 'Q has this property. The notion of ordinal similarity to
be discussed in this section is that of similarity applied to simply ordered
sets (or chains) with the respective ordering relations being taken into
account. To case the notation fir such sets, we shall suppress the symbol
for the ordering relation and speak of "the chain X." When explicit
mention of the ordering relation is called for, the symbol " <" will be
used. In particular, this symbol will designate possible different order-
ings in different contexts.

Two chains X and 1' are called ordinally similar, symbolized

X = Y,
if they are isomorphic ordered sets. This means (Section 1.11) that
there exists a one-to-one correspondence, say f, on X onto Y such that
both f and J ' are order-preserving. In the case of chains, the condition
that J-' be order-preserving can be dropped, since it follows from the
others. Both an isomorphism and its inverse preserve < and, conversely,
a function that maps one chain onto another is an isomorphism if it
and its inverse preserves <. Ordinal similarity is an equivalence rela-
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Lion on any collection of chains. An equivalence class under ordinal
similarity is called an order type. Order types of infinite sets will
generally be designated by lower case Creek letters. If the ordered set A
is a representative of the order type a, we shall say that A is of order
type a and sometimes write A for a. With regard to our definition of
an order type, remarks corresponding to those accompanying that of a
cardinal number are appropriate. What an order type is, is immaterial
so long as it is an object associated in common with those and only
those simply ordered sets which are ordinally similar. That is, ordinally
similar simply ordered sets, and only such, have the same order type:

Ordinal similarity implies similarity, and hence A = B implies :4 = B.
In particular, therefore, for finite chains A and B, A = B implies A = B.
Conversely, for finite chains A and B, A = B implies that each is
similar to 10, 1, , n - 1 } for some natural number n and, indeed,
is ordirally similar to 10, 1, , n - 11 with its natural ordering. That
is, f1 = B implies 71 = B, and hence two finite chains are of the same
order type if they have the same cardinal number. Thus there is but
one order type corresponding to any set of n elements (n a natural
number) and this order type will also be designated by n.

As a trivial consequence of this, a given finite set determines a single
order type. This is not true of an infinite set, which admits of a simple
ordering; relative to various orderings there will correspond different
order types. For the purpose of illustrating this remark, as well as for
later examples, it is convenient to employ our notation (...) for an
ordered n-tulle to indicate the ordering intended for a given set. For
example,

(0, 1, 2,

will serve to denote the natural number sequence. We denote the order
type of N with its natural ordering by co. As our first example of an
infinite set which, relative to different. simple orderings, represents
different order types, we take N. The chains

(0,1,2, ,n, - ) and ( - , n, ,2,1,0)

are not ordinally similar. Indeed, assume the contrary and let the
mapping f on the first onto the second demonstrate their ordinal sim-
ilarity. Then there exists k in the first set such f(k) = 0 and hence,
since k + I > k (according to the first ordering), f(k + 1) must be
greater than 0 according to the second ordering. This is a contradiction,
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since 0 is the greatest clement under the second ordering. Thus the
chains in question are not ordinally similar. Again,

(0,1,2, ..-,n, ...) and (1,3,5, ...,0,2,4, ...)
arc not ordinally similar, since the contrary assumption implies the
existence in the first set of infinitely many elements less than k, the cle-
ment which maps onto 0 in the second set. This is a contradiction.

There is an arithmetic for order types- one that is more interesting
than that for cardinals. Let A and B be disjoint sets of order types a
and P. Then the sum, a + a, of a and a is the order type of A U B,
simply ordered as follows. Pairs in A and pairs in R are ordered accord-
ing to the simple orderings of A and B respectively, and each a in A
precedes each b in B. The product, afi, of a and P is the order type of
A X B ordered by

(a, b) <(a',b')ifb <b',orb = b' and a < a'.
It is left as an exercise to show that both of these definitions are inde-
pendent of the representatives used in their formulation. Although the
commutative law is valid for addition and multiplication of finite order
type, the same is not true in general. For example,

n -}- w n - 1 ) --}- \_n, n -}- 1, .. = 0, 1, ... , n,- = w,
but

w -F- n = n, n + 1, :: -) -f- i, ,-.. rt - 1-
(n, it }

since the representative of w 4 n has a greatest element but that of
n + w does not. Also,

w2=(0,1,
(0, b), (1, b), co

while
2w = - ( - b,-, 0), ), (b, l ), -- . = w.

't'hus w2 2w, since the member (0, b) of the representative of w2 is
preceded by infinitely many elements unlike any member of the rep-
resen.tative of 2w.

The exercises for this section call for proofs of the associative laws
for both addition and multiplication of order type. The general associ-
ative law for each operation then.follows by Theorem 2.2. The distribu-
tive law

a(f3 + Y) = a# A- ay
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and consequently its general form holds, but
general, as shown by the example

y)a 5-4- pot -1- y(X in

(w -I- 1)2 = (w + 1) + (w -I- 1) = co -{- [(1 -1 w) + }- 1 ]

=w+(w+1) =w2-{-1 p!5 w24-2.
We shall pursue the study of the arithmetic of arbitrary order types

110 further. However, additional properties will be obtained for the
arithmetic of a restricted class of order types, namely, those which are
represented by well-ordered sets. These appear in the next section after
the derivation of some fundamental properties of such sets.

EXERCISES
6.1. Show that the definitions of a -I- /3 and a/3 for order types a and (3 are

independent of the representatives used.
6.2. Prove the associative law for addition and for multiplication of order

types.
6.3. Prove the distributive law a((3 -I- 'y) = a/3 1- ay for order types.
6.4. Supply the details of the example in the text which demonstrates that
-1- y)a 5-' (3a -1- ya for all order types a, 0, y.
6.5. Let A be a chain. A subset I3 of A such that if b C B, a C A, and

a < b, then a C B -is a segment of A. Clearly, 0 and A are segments of A;
other segments are proper segments. Prove that if R and C are segments of A,
then one is a subset of the other.

6.6. Prove that a chain is of order type co if it is infinite and every proper
segment is finite.

6.7. From a chain (A, <), a chain (A, <*) can be derived upon defining
a <* b if b < a. If the original set has order type a, that of the new chain is
denoted by a*. For example, ( . , 2, 1, 0) is of order type w*. Give two reasons,
each of which is adequate, to justify the assertion that w + co* 76 w* + w.

6.8. Prove that for any order types a and 0, (a -I- 8)* _ (3* + a*.
6.9. Prove that for an order type a, a = a* if a has the form (3 -I- /3* or

p -1- 1 + 6* for some order type (3.
6.10. Given I -I- a = a for an order type a iff a = co + 0 for some (3, prove

that a + 1 = a iff a = (3 + w* for some 0.
6.11. The order type of the set Q of rational numbers with its familiar order-

ing is designated by r). It can be proved that a chain is of order type n iff it
(i) has neither a first nor a last element, (ii) is dense (that is, between each pair
of distinct elements there is a further element of the set), and (iii) is denuwer-
able. Use this result to prove that

(a) if a and b are rational numbers with a < b, then the set of all rationals
between a and b has order type n, and
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(b) if from an ordered set of order type rt there is removed a finite number of
elements, the remaining set has order type r,.

7. Well-ordered Sets and Ordinal Numbers

We recall that a well-ordered set is a partially ordered set such that
each nonempty subset has a least (or, first) element. Such a set is a
chain, among other things. To ensure that a relation p well-orders a
set A, it is sufficient that p (restricted to A) be antisymmetric and that
in each nonempty subset A, there exist an element a, such that a,pb for
every b C A,. The proof is left as an exercise.

EXAMPLES
7.1. The empty set is well-ordered relative to any simple ordering. Every

subset of a well-ordered set is well-ordered relative to the same ordering relation
as for the original set.

7.2. It is left as an exercise to prove that a simply ordered set which is
ordinally similar to a well-ordered set is itself well-ordered. It follows that any
simply ordered set of order type w is well-ordered.

7.3. The simple ordering of the set of natural numbers given by
(1, 3, 5, , 0, 2, 4, is a well-ordering. 'thus, sets of order type w + w are
well-ordered.

7.4. The ordering of the set of positive rationals
(1/1, 2/1, 3/1, ..., 1/2, 3/2, 5/2, 1/3, 2/3, 4/3, ...)

is a well-ordering, since any uonempty subset contains fractions with a smallest
denominator, and among these is one fraction with smallest numerator. 't'his
fraction is the least member of the subset. The order type of this ordered set is
found to be ww or w2, following the conventional abbreviation. Thus, sets of
order type w2 are well-ordered.

7.5. A set of order type w* (see Exercise 6.7) is not well-ordered since it has
no first element. It is left as an exercise to show that any infinite chain, no
infinite subset of which has a first element, is of order type w*.

7.6. Any simple ordering of a finite set is a well-ordering.
7.7. Well-ordered sets have many properties in common with the natural

number sequence. However, N has two properties not shared by well-ordered
sets in general. First, N has no last element-as does, for instance, the well-
ordered set (0, 1, 2, - - , oo). Second, each element n of N, apart from its first
element, has an immediate predecessor n - 1. This is not true of the element
in the set above; nor is it true of the element 0 in Example 7.3.

Both proofs and definitions by induction can be carried out in any
well-ordered set. Their respective formulations are entirely analogous
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to those of proofs and definitions by strong induction, given in Section 2.
The principle of proof by transfinite induction is as follows, where,
as earlier, 1'(x) stands for "the clement x has the property P."

if P(x)), where xu is the first element of the well-ordered set X, and
if for all z in A', P(y) for ally < z implies P(z), then P(x) for all x in X. f

A demonstration of this principle is simply a repetition of the argu-
merit used to substantiate the earlier statement of proof by strong in-
duction. 'This result is seldom used since, in practice, it is usually as
easy to carry out the proof of the principle for the case at hand as to
apply the principle.

In order to state the generalization to any well-ordered set of our
earlier result ('1'heorern 2.4) concerning definition by induction, it is
convenient to introduce two auxiliary concepts. If A is a well-ordered
set and if x C A, then (a C Ala < x} is called the initial segment
determined by x; we shall denote it by As. 1f B is an arbitrary nonempty
set, then by a sequence of type x in B we shall mean a function on A.
into B. Then the principle of definition by transfinite induction may
be stated as follows.

Let A be a well-ordered set having ao as its least element, let B be a
set, and let c be a nicrnber of B. If h is a function whose range is included
in 13 and whose domain is the set ,j of all sequences j of type x in B for
spine x ° ao, then there exists exactly one function k: A--} B such that

k(ao) = c and k(x) = h(klA.,)

for each x in A other than ao.
The proof is left as an exercise. It involves a slight modification of

that given for 'T'heorem 2.4 because of the possible variance of an arbi-
trary well-ordered set A with N, noted in Example 7.7.

We turn our attention next to the derivation of structural features
of well-ordered sets. Three basic results (Theorems 7.2-7.4) in this
category follow easily from the next theorem.

TIl E0 R L M 7.1 . If A is a well-ordered set and f is an isomorphism
of A into itself, then a < f(a) for each a in A.

Proof. Assume that for some element a in A we have a > f(a). I;et B
be the subset of A of all such elements and b its least rtrenther. Since
b > f(b) it follows chat f(b) > f(f(b)). Thus f(b) E B, which is a
contradiction.
f The hypothesis that xo have property P is redundant, for it is that instance of the second

hypothesis which results upon choosing z as xo.
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THEOREM 7.2. A well-ordered set is not ordinally similar to any
of its initial segments.

Proof. Assume, to the contrary, that f is an isomorphism of the well-
ordered set A and one of its initial segments A. Theorem 7.1 is

applicable and, consequently, x < f(x). Thus, f(x) V A=, which is a
contradiction.

COROLLARY. IfA is a well-ordered set and ifA. = As,, then x = y.
Proof. We assume that A, = A along with x 7` y and derive a
contradiction. If x 0 y, then either x < y or y < x. Suppose that
x < y. Thet, A. is an initial segment of the well-ordered set A and
is ordinally similar to Ar. This is a contradiction of Theorem 7.2.
The assumption that y < x yields a similar contradiction.

THEOREM 7.3. If A and B are ordinally similar well-ordered
sets, then there exists exactly one isoinorphisni between them.

Proof. Assume that g and h are isomorphisnis of A onto B. Then
f = g- ' o It is an isornorphisin of A onto itself. According to Theorem
7.1 this implies that a < (g'-' o h) (a) for each a in A and, consc-
quently, that g(a) < h(a). Reversing the roles of g and h, we may
also conclude that h(a) < g(a) for all a in A. Hence, g = h.

THEOREM 7.4. If A and B are well-ordered sets, then exactly
one of the following hold: A is ordinally similar to B, A is orclinally
similar to an initial segment of B, B is ordinally similar to an initial
segment of A.

Proof. The conclusion is trivially trite if A or B is empty. So as-
sume that neither set is empty and that neither is ordinally similar
to an initial segment of the other. We shall prove that, in these cir-
cumstances, A = B. Let x be a member of A distinct front the least
element, ao, of A, and let j be a sequence of type x in B. If the range
of j has an upper bound in 11, let h(j) be its least upper bound, while
if the range of j has no upper bound, let h(j) = bo, the least element
of B. Finally, let h(ao) = bo. Then It is a function of the type described
in our formulation of the principle of definition by Iransfinite induc-
tion. Hence, there exists a function k on A into 13 such that k(ao) = bo
and k(x) = h(kjA7) for each x in A other than ao. It is left as an exer-
cise to prove by transfiiiite induction that, for each x in A, the func-
tion k maps the initial segment determined by x in A onto the initial
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segment determined by k(x) in B in a one-to-one fashion. i'lien it is
another easy exercise to conclude that k is an isomorphism of A
onto B.

CORC)LI.ARY. For well-ordered sets A and B, exactly one of
A = B, A < 1, Ii < A holds. In other words, any two cardinal
numbers which have well-ordered sets as representatives are com-
parable.

The order type of a well-ordered set is called an ordinal number, or
simply an ordinal. Since a chain which is ordinally similar to a well-
ordered set is itself well-ordered, every representative of an ordinal is
well-ordered. Among the specific order types mentioned so far, some
may be classified as ordinals. 't'his is true of the order types represented
by finite simply ordered sets, since such an ordering is automatically a
well-ordering. 't'hus the natural numbers may henceforth be called
ordinal numbers. The ordinals which are not natural numbers are
called transfinite ordinals. ']'he one-to-one correspondence between
finite cardinal and ordinal numbers is due to the fact that, not only can
any finite set A be simply ordered, but that. all orderings of A are similar
(and, indccd, well-orderings). In contrast, one cannot expect that in-
finite cardinals can serve as ordinals, because a given infinite set which
can be well-ordered, can be at least simply ordered in a variety of
ways and, consequently, determines a variety of order types, some of
which may be different ordinals. The state of affairs is adequately illus-
trated by the set of natural numbers. Below are indicated seven simple
orderings of N, each having a different order type:

(0, 1, 2, 3, ... )
(..., 3, 2, 1, 0),
(1,3,5, ...,0,2,4, ...),
(...,4,2,0, ...,513, 1),
(1,3,5, ...,4,2,0),
(...5,3,1,0,2,4, ...),
(0,3,6,9, ...1,4,7,10, ...,2,5,8, ...).

Of these, the first, third, and last determine ordinals (namely w, w2,
and w3 respectively). This suggests what is indeed the case: the infinite
ordinals are much more abundant than the infinite cardinals.

If a and P are ordinals, we shall say that a is less than 03, symbolized

a < /3,
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if there exists a representative of a which is ordinally similar to an
initial segment of one for f3. Certainly this relation is transitive and, ac_
cording to 'T'heorem 7.2, is irreflexive. Hence, the relation < partially
orders any set of ordinals. Theorem 7.4 yields the further result that
this partial ordering relation is actually a simple ordering; that is, any
two ordinals are comparable. The still stronger result, that the order-
ing relation for ordinals well-orders any set of ordinals, can be proved.
As a preliminary to the proof of this fundamental result we derive a
special case of it.

TI I EOREM 7.5. The set s(a) of all ordinals less than the ordinal a
is a well-ordered set of ordinal number a.

Proof. Let f3 C s(a). Then there exist representatives A of a and
B of f3 such that B = Al for some x in A. The element x is uniquely
determined by [3 in view of the Corollary to 'T'heorem 7.2. Hence, a
mapping f: s(ee) -} A is defined by setting f(/3) = x. Clearly f is
one-to-one. Moreover, f is onto A, since given y in A, if we set [3 = Av,
then [3 C s(a) and f(a) = y. Finally, it is clear that f is order-pre-
serving. 't'hus, we have proved that s(a) -= A; since A is well-ordered,
so is .s(a) and s(a) = A = a.

This result gives a certain "normal" representation for ordinal num-
bers; whenever it is permissible to replace a set A by one that is ordinally
similar to it, we may use s(a) if a = A.

"I' I I E () R Is M 7.6. Any set of ordinals is well-ordered.

Proof. It roust be shown that each nonenrpty set A of ordinals has
a least member. Let a C A. If a is not the least member of A, then
A n s(a) -x 0. 'T'hen A n 3(n), as a subset of s(a), is well-ordered,
and thus has a first member j3. If b C A, then h < 0 implies b < a
and, hence, b C A n s((.Y), which contradicts the choice of ft. As
ne of the simply ordered set A, (3 and S are comparable, so we
may conclude that / < b for all b in A. 'T'hus 0 is the least member
of A.

'I H L' ORE M 7.7. If A is any set of ordinals, then there exist ordinals
greater than any ordinal of A. Indeed, there exists a smallest such
ordinal.

Proof. Let A' = A U U { s(a) ja C A I. By Theorem 7.6, A' is well
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ordered. If a C A, s(a) C A' and s(a) = A.. Hence a = -s-(-a) < O'.
Thus a < A' for each a in A.

Since ordinal numbers are order types, the sun, a + /3, of ordinals
a and /3 is defined. It is left as an exercise to show that this sum is an
ordinal number. That the product, af, of a and 0 as order types is an
ordinal is proved as follows. If either of the ordinals a and /3 is equal to
zero, then so is a/ and the proof is complete. So assume that a > 0
and /3 > 0. Let A and B be well-ordered sets such that fl = a and
B _ /3. Then, by definition, a$ = A _X W if in A X B we define
(a, b) < (a', b') iff b < b' or b = b' and a < a'. It suffices to prove that
A >( B is well-ordered by this relation. Let C be a nonernpty subset of
A X B and let (ar, br) be some member of C. Let bo be the least member
of (b C BI(ar, b) C C} and, in turn, let an be the least member of
(a C AI(a, C C1. I t is an easy exercise to prove that (ao, bo) is the
least element of C, and this completes the proof.

Our first result relating addition and ordering of ordinals is

THEOREM 7.8. If a and /3 are ordinals and 0 > 0, then a +
0 > a.
Proof. Let C be a well-ordered set of ordinal number a + P. Then
C=AUBwhereA= a, R =/3, and B- 0, since/ -X 0. Hence
A is a segment of C. It follows that r > A; that is, a + /3 > a.

The above result implies that a + I > a for every ordinal a. It is
left as an exercise to prove further that a + I is the successor of a;
that is, there is no ordinal f; such that a < i; < a -f- 1. We have already
seen, in contrast to this, that there are ordinals having no predecessor.
Ordinals having it predecessor are ordinal numbers of the first kind
and those having no predecessor are ordinal numbers of the second
kind. For example, 5, w -+- 2, and w2 + 3 are ordinals of the first kind
while w, w2, and w2 are ordinals of the second kind.

THEOREM 7.9. Let a and /3 be ordinals with a < /3. Then there
exists exactly one ordinal -y > 0 such that a -}- y = 0.

Proof. Let A and B be well-ordered sets with A = a and B = /3.
The assumption that a < /3 implies that A = B. C B. Let C = B - B.
and -y = C. Then B,UC= B and B lC=0,so a+y =/3.

To prove the uniqueness, suppose that both a + yr = /3 and
a + y2 = 0, where yl 0 y2. Let us say that yr < rye. Then there
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exists a b > 0 such that 72 = 7r + S. I-fence 0 = a + 72 = a +
(-y' + S) = ((x + 7t) + S = a -{- S, which is a contradiction of 'I'he-
orern 7.8.

EXAMPLES
7.8. According to Theorem 7.9, the equation a + > = 13 has a unique solu-

tion for given ordinals a and fl with a < 13. This solution is denoted by 14 - a.
On the other hand, the equation t -{- a = Q may not have any solution for
given a and 6 with a < B. An example is + I = w.

7.9. As with order type generally, addition of ordinals is not a commutative
operation. Indeed, it may be, for ordinals a and 0, that a + 0 < 0 + a or that
a+0>/3 1- a. For example, w > 1and1+w<w-I-Iwhile w-1.2>w+I
and (w -I- 1) -}- (w -I- 2) > (w + 21 - (w A- 1).

7.10. According to '['heorcrn 7.5, if the well-ordered set A is of order type a,
then A .c(a), the set of ordinals less than a. Ilence this set of ordinals may be
used to index the members of A. That is, we may describe A as {aelt < a}
where at < a ifT < +t. In this connection it is desirable to note the first mem-
bers of a set s(a) for sufficiently large a. First come the natural numbers; their
ordering, as dictated by their role as ordinals, coincides with that in their
original role as members of the natural number sequence. After the set of all
finite ordinals, occurs the first transfinite ordinal. According to Theorem 7.5 it
is the order type of (0, 1, 2, -), that is, w. There follows its successor w l- 1,
then w + 2, and so on. So far we then have

0,1,2, ...,w,w-l- 1,w+2,
This sequence has order type co + w - w2, so the number following these is w2.
Continuing in this fashion we arrive at the sequence

0,1,2,. ,w,w4-1,w-I-2, ,w2,(o24-1, ,w3,w3+1, ,

Wn, W11 -l- 1, ..., w2, w2 -l- 1, ..., w2 + (J, ... W2 + wnr -I- no, ....

This sequence consists of two sequences of order type w2 in juetaposition and
hence, as a whole, it represents the ordinal w'2, which is then the next ordinal.
Later ordinals include all those of the form

Wknx. -I- w '11k-t -l. - - - + w11r -I- no,

with finite k and n's. Still greater ordinals can be secured by expolien tiation, an
operation that we have not defined.

7.11. Let V be a given transfinite ordinal. 'I'lrc sequence (atIE < plf of or-
dinals at is increasing iff whenever h < < gyp, at < at. Let X he the least ordinal
greater than every a (Theorern 7.7). Suppose that q' is an ordinal of the second
kind (that is, the sequence has no last term) and let At he any ordinal less titan A.
Then p cannot be greater than every a; thus there exists an index v such that
is < a,. That is, µ<at<, for v<t<p.
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In other words, for every ordinal u < A, all terms of {atIt < vi, from some
point on, are between µ and A. Thus, A has a property analogous to that of the
limit of an increasing sequence of real numbers. Thus it is natural to call A the
limit of the increasing seglience (atj( < sp) and to write A = limn at. The nuni-

t -v
bcr A is obviously of the second kind. Conversely, for any ordinal A of the second
kind we have A = lim t. As such, ordinals of the second kind are often called

t<a
limit ordinals.

Because of the comparability theorem for ordinals, the properties of
addition and multiplication of ordinals are more extensive than for
order type generally. Some of these are collected in the next theorem;
proofs are left as exercises.

THEOREM 7.10. For ordinal nunibers a, 0, in(] y,

(I) a < (3 implies y -I a < y -I- (3 and conversr'ly;
(Il) a < (3 implies a -I- y < (3 -I- y; conversely, a I- y < (3 I- y

imnplies a < (3;
(III) a < (3 and y > 0 imply ya < y(3; conversely, ya < y(3

implies a < (3;
(IV) a < (3 implies ay < (3y; conversely ay < (3y implies a < y;
(V) y+a=y-{-i3implies a=(3;

(VI) ya = y(3 and y > 0 imply a = (3.

The equality signs in (II) and (IV) cannot be dropped; for example,
I < 2 but I + w = 2 ± w and 1w = 2w. The equality 1 -I- w = 2 -I- w
also illustrates that (V) has no right-hand analogue. There is a right-
hand analogue of (VI)- if a, (3, and y are ordinal numbers such that
ay = fly and y is a number of the first kind, then a = (3. A proof is
suggested in an exercise.

In Example 7.8 we mentioned subtraction for ordinals. The following
result is basic. in formulating the concept and properties of division.
However, we shall not pursue this matter.

TI1L'OREM 7.1 1 . If a and (3 are ordinals and (3 > 0, then a has
a unique representation in the forth

a=(3k+p where 0<p<(3.
Proof. Let (3 > 0. Then 3 > I and hence (3a > 1a = a. If (ice = a,
this is a representation of the desired kind. Otherwise fla > a. Now,
if a, (3, and y arc ordinals with (3a > y, then y has a unique repre-



110 The Natural Number Sequence and its Generalizations I C11 A P. 2

sentation in the form y = 13a1 + 01 where a, < a and #, < P. The
proof is left to the reader. We apply this result with a as y to obtain
a = j3a, + #, where /31 < 13. Again we have a representation of the
type desired. The proof of uniqueness is left as an exercise.

EXAMPLES
7.12. Ordinal arithmetic presents a wide assortment of oddities. There follows

a sketchy sampling.

(a) For n > 1, w"+' = (w" + w)2 - (wn)2. However, it can be shown that,,
cannot be represented as a difference of squares of ordinals.

(b) The ordinal w2 has infinitely many representations as a difference of
squares: w2 = [w(n + 1)]2 - (wn)2 for n = 1, 2, .

(c) For every n > 1, (w + 1)"w" is an nth power of an ordinal, namely W2.
On the other hand, w"(w + 1)" has no such representation. Indeed, since
Wn(w + 1)n _ w2n + W2n 1 + ... f Wn
(W2 _+. On = W2n + W2n I < Wn(W + 1)n < W2n + In -1 + .../

-1- w + 1 = (w2 + W

That is, wn(w + 1)" lies between the nth powers of two successive ordinals
and hence cannot be an nth Dower.

(d) If a = wan + w"-1 and 0 = W2n + w for n > 1, then a2 = A3; yet there
is no ordinal y such that a = y3 and Q = y2.

7.13. With S = 2 in Theorem 7.11 we may conclude that every ordinal can
be represented either as 2t or 2t + 1, that is, is either even or odd. For example,
(w + 1)2 = 2(w2) + 1 is odd!

Again, with ;Q = w, we may conclude from Theorem 7.11 that any ordinal
a can be represented as a = wE + p where p is finite. If p > 0, then a is a num-
ber of the first kind since a = w + (p - 1) + 1. It follows that every ordinal
of the second kind is of the form wt. The converse statement is easily established,
yielding a characterization of ordinals of the second kind as those having W as
a left-hand divisor.

EXERCISES
7.1. Prove that if a relation p (restricted to a set A) is antisymmetric and if

in each nonempty subset A, of A there exists an element a, such that a,pb for
every b E A1, then p well-orders A.

7.2. Prove that a simply ordered set which is ordinally similar to a well-
ordered set is well-ordered.

7.3. Show that any infinite chain, no infinite subset of which has a first ele-
ment, is of order type w*.

7.4. Establish the principle of definition by transfinite induction given in
the text.
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7.5. Supply the missing details in the proof of Theorem 7.4.
7.6. In the text we inferred from Theorem 7.4 that any two ordinals are

comparable. Give an independent proof of comparability, using Theorem 7.5.
7.7. Prove that the sum of two ordinals is an ordinal.
7.8. Complete the proof of the assertion that the product of two ordinals is

an ordinal.
7.9. Find how many different values are assumed by the sum of the ordinals

1, 2, 3, 4, and w in all possible arrangements.
7.10. Determine an arrangement of w, w2 + 1, w3, w5, and w2 for which their

sum is w2 + w11 + 1.
7.11. Prove Theorem 7.10 by first proving the forward implications in

(I)--(IV).
7.12. Prove that if a and P are ordinals with a > 6, then a + n > fi + n for
= 1,2,...
7.13. Prove that 1 + a - a for an ordinal a iff a > w.
7.14. Find ordinals a and fl such that (a - fi) ± f3 P6 a.
7.15. Show that if a, 0, y, and 5 are ordinals such that a > f3 and y > 5,

then ay > 06. Use this to prove that if a > f3 and y is an ordinal of the first
kind, then ay > fiy. Then show that if cry = 0y and y is of the first kind,
a = 0. This is a right-hand analogue of (VI) in Theorem 7.10.

7.16. Show that (W' -'- W)5 = (W., + w')2.
7.17. Suppose that a and f3 are positive ordinals with a -{- a = w. What

is af3?

7.18. Give an example of two ordinals a and 13 such that a + fi = + a
but a2 -l- f32 _ /#2 + a2.

7.19. Prove that for ordinals a and fl, af3 = f3a implies a2f32 = 2a2.

7.20. Prove that an ordinal f3 is of the second kind iff nf3 = 0 for n = 1, 2,
7.21. Prove that the product of two nonzero ordinals is a number of the first

kind iff both factors are of the first kind.
7.22. Complete the proof of Theorem 7.11.

8. The Axiom of Choice, the Well-ordering Theorem,
and Zorn's Lemma

A theorem to the effect that all sets occurring in mathematics can be
well-ordered would be extremely valuable. "Then, for instance, defini-
tions and proof's could be fornmulated by induction for all sets, just as
for the natural number sequence. In 1904, Zernielo gave a dernonstra-
tion of the well-ordering theorem which asserts that every set can be
well-ordered. Soon after its publication it was pointed out by E. Borel,
that the proof employed a property of sets which may be deduced easily
from the well-ordering theorem, thereby making the two properties
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equivalent. The property assumed by Zcrmelo has become known as
the axiom of choice. One of its formulations is the following.

(AC,) If a is a disjoint collection of noncnrpty sets, then there exists
a set B such that for each A in (t, B fl A is a unit set.

In other words, if a is a disjoint collection of nonernpty sets, then
there exists a set which has a single member in common with each
member of a. Since a disjoint collection of nonemjrty sets is a partition
of the union of the collection, (AC,) is clearly equivalent to: For each
partition (a of a set. U there exists a subset of U consisting of exactly one
member of each member of a. Such a set is called a representative set
for the partition as well as for the associated equivalence relation. The
restriction in (A(.,) to disjoint collections may be circumvented by formu-
lating it for families of sets. This version reads: If {A,} is a. family of
nonempty sets indexed by a nonempty set 1, then there exists a family
{xi} with i E I such that xi C Ai for each i C 1.

Intuitively, one thinks of arriving at a set B of the type mentioned in
(AC,) by a constructive process; one chooses, in turn, an x from each
of the sets A; this accounts for the presence of the word "choice" in the
name. That it should be named an axiom is simply an indication that
no one has been able to infer the existence of such a set, in general
(other than from an equivalent property of sets).

1 he axiom of choice has been the subject of serious controversy among
mathematicians. Some reject it totally on such grounds as the utter
impossibility of making infinitely many selections (needless to say, it is
only the case where a is infinite that the axiom injects anything new) or,
on the lack of precise definition of a representative set. Others accept
the axiom for the case where a is denumerable and reject it in the
uncountable case. Many accept it without any reservatin. Of those to
whom the plausibility of (AC,) is indisputable, some revise their attitude
when propositions which can be proved equivalent are encountered.
Several equivalent forms, which are in the nature of more useful work-
ing forms, are derived in this section.

'T'here is another category of propositions equivalent to the axiom of
choice which might be catalogued as illuminating. For example, in
Section 10 it will be shown that it is equivalent to the assertion that the
ordering of cardinal numbers, discussed in Section 3, is a simple order-
ing. This is not a useful version of the choice axiom, but rather serves to
point out that someone who "believes" that cardinals should be simply
ordered must also "believe" the axiom of choice. Thus, such equivalent
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formulations serve primarily to sharpen the delineation between the two
schools of thought. Because of the diversity of opinion about the axiom of
choice, it is common practice for some present-day authors to point out
the occurrences of their usages of it. In cases where a new result rests on
some classical mathematics this may amount to merely superficial
honesty, since in much of classical mathematics the axiom of choice has
slipped into proofs without being noticed, and no one has ever combed
through all of it and sorted out the tainted theorems from the untainted.

To the best of our knowledge the axiom of choice has been employed
in the foregoing only in the proof of Theorem 4.4. Henceforth, we accept
the axiom of choice as a valid principle of intuitive set theory and use
it without reservation. In this matter we are guided by Cantor, who
tacitly accepted the axiom. For intuitive set theory it has the same status
as the principles of extension and abstraction (Section 1.2); collectively,
these three assumptions serve as a basis for the theory.

Turning to the derivation of propositions which are equivalent to
the axiom of choice, we present first two variations which are so closely
related to (AC,) that. they are also known by the same

(AC2) For every set X there exists a function f on the collection,
U,(X) - 10 }, of nonempty subsets of X such that f(A) C A.

Such a function is a choice function for X. Thus, (ACC2) asserts that
every set has a choice function.

(AC3) If {A,} is a -family of none,npty sets indexed by a nonempty
set I, then X,EIAi is noncmpty.

The equivalence of (AC,)--(AC3) is easily established. That of (AC,)
and (AC3) follows directly from the formulation of (A(',,) for-a family of
sets and the definition of cartesian product. Further, it is clear that
(AC,) implies (AC2). To complete the proof of the equivalence of
(AC,)--(AC3) it is sufficient to prove that (AC2) implies (AC,). The
reader can do this easily.

'1'o bridge the gap between the axiom of choice and other useful
equivalent forms, we prove a fixed point theorem due to N. Bourbaki
(1939). Before tackling its proof, as well as the statement and proof of
the theorem that follows it, the reader would do well to refresh his
memory with regard to the definitions given at the end of Section 1.11.

THEOREM 8.1. Let E be a nonempty partially ordered set such
that every chain included in E has a least upper bound in E. If
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f : E --} E has the property that f (x) x for all x in E, then there
exists at least one x in E such that f(x) = x.

Proof. Let a be a fixed element of E. A subset A of E will be called
admissible (relative to a) if it has the following properties.

(1) a C A.
(2) J(A) C A.
(3) if F is a chain included in A, then lub F C A.

Clearly E is admissible. Moreover, it is easily verified that M,
the intersection of all admissible subsets, is admissible. Thus M is the
smallest admissible subset. It follows that if a subset M0 of M can
be shown to be admissible, then MO = M. This technique is used to
derive each of three properties of M (designated by Roman numer-
als), from which the theorem follows easily.

(I) The clement a is the first element of M. It is sufficient to prove
that the subset A = ;x C Mix > a } of M is admissible. For this we
verify, in turn, properties (1), (2), and (3) of an admissible set.

(1)'
(2)'

(3)'

Since aCMand a>a,aCA.
I.et x E A; to prove f(x) C A. Now x E A implies x E M,
and hence, f(x) E M by (2). Also, x C A implies x > a and
this, with J(x) > x, yields f(x) > a. Thus f(x) E A.
Let to = lub F, where F is a chain included in A. Since
A C M, we have F C-: M and hence to C M by property (3)
of admissible sets. Also, F C A implies x > a for all x E F, and
hence to > a.

Thus A is admissible, A = M, and (1) is proved.
Before Continuing, we make a definition. An element x of E is

said to have property P, in symbols P(x), if y C M and y < x implies
f (y) < X.

(II) If x C M and P(x), then for each z E M either z < x or
z > f(x). It is sufficient to prove that the subset B = }z C MIz < x
or z > J '(x) } is admissible.

(1)" aCIv!anda <x [indeed for each x C M by (I)1,so aCB.
(2)" Let z C B; to show that f (z) E B. As in (2)', f (z) E M. Also,

z C B implies z < x or z > f(x) by definition. if z = x, then
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f(z) = f(x) so that f(z) > f(x) and hence f(z) C B. If z < x,
then since P(x), f(z) < x and f(z) C B. Finally, if z > f(x),
then f(z) > z > f(x) and, again, f(z) C B.

(3)" Let w = lub F, where b 'is a chain included in B. As in (3)',
w C M. Also, for each z C F either z < x or z > f(x). If the
first alternative holds for all z C F, then x is an upper bound
for F, and hence w < x, so zo C B. Otherwise, there exists a
z C F such that z > f(x). Then w > z > f(x) and, again,
w C B.

Thus B is admissible, B = M, and (II) is proved.

(III) Every element of M has property P. It is sufficient to prove
that the subset C = [x C MIP(x) [ is admissible.

(l)"' a C M and is, moreover, the least element of M. Thus, for
no z of M is z < a. Hence, a satisfies I' vacuously and, conse-
quently, is in C.

(2) "' Let x C C; to show that f(x) C C. As in (2)', f(x) C M. It
remains to prove that f(x) has property P, that is, y C M
and y < f(x) imply f(y) < f(x). Applying (II) to x we have
either y < x or y > f(x). The second possibility cannot hold,
for y > f(x) with y < f(x) is impossible. Thus y < x. If
y < x, then f(y) < x, using property P for x. This, with
x < f(x), implies f(y) < fi(x), as required. Also it is immedi-
ate that if y = x the same conclusion holds. Thus f(x) C C.

(3)"' Let w = lub F, where F is a chain included in C. As in (3)',
w C M. Thus it remains to show that P(ro), that is, y C M
and y < w imply f(y) < w. For this we show first that for
such a y there exists y, C F such that y < y,. Indeed, if no
such y, C F exists, then by (II) [Note: y, C F implies that
P(y,) 1, y > f(y,) > y, for ally, C F. Then y is an upper bound
for F and hence, y > iv, which contradicts the assumption
that y < w. Thus a y, C b with y < y, exists. If y < y,, then
by property P for y,, f(y) < y, < w, so that f(y) < iv as re-
quired. If y = y,, then P(y) and hence, by (11), either w < y
orf(y) < w. The first possibility is excluded and hence, again,
f(y) < w.

Thus C is admissible, C = M, and (III) is proved.
Now for the coup de grace. From (II) and (I1I) it follows that if x,
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y E M, then either y < x or y > f(x) > x, so M is simply ordered.
Let xo = lub M. Since M is admissible, xo C M and, moreover,
f(.to) E M. 'thus f(xo) < xo. But xo < f(xo) by hypothesis. It follows
that f(xo) = xo.

THEOREM 8.2. The following statements arc equivalent to one
another.

(I) Zcrmclo's axiom of choice: For every set X there exists a
function f on the collection of noncmpty subsets A of X into
X, such that for each A, f(A) C A.

(II) 1-!ausdorff's maximal principle: Every partially ordered set
includes a maximal chain, that is, a chain which is not a
proper subset of any other chain.

(lll) 'horn's lemma: Every partially ordered set in
which each chain has an upper bound contains a maximal
clement.

(IV) Every set can be well-ordered.

Proof. (I) implies (II). Let (P, <) be a partially ordered set and as-
sume that (11) is false for it. ']'his means, if . is the family of all sub-
sets X of P which arc simply ordered by <, that for each X in a there
exists Y in a. with X C Y. That is,

ax - IYC aIXC Y}
is noncmpty for each X in U. By (1) there exists a function f on
}axlX C a} into a such that f(ax) C ax. "Thus

g: a -*- a with g(X) = f(ax)
has the property that X C g(X) for all X in U. As such, the partially
ordered set (a, C), together with the function g, satisfies the hypotheses.
of Theorem 8.1. (It is left as an exercise to show that if a* is a subset
of a which is simply ordered by C, then U a* = lub ct*). But
X C g(X) for all X in a is a contradiction of the conclusion of 'l'he-
orcin 8.1. Thus, since (1) and the denial of (11) lead to a contradic-.
Lion, (1) does imply (I1).

(11) implies (111). Assume that the partially ordered set (1', <)
satisfies the hypothesis of (111). By (11), there exists a maximal sub-
set A of 1', simply ordered by <. Let a be an upper bound for A.

Then a is a maximal clement for P. Indeed, assume that a < x for
some x in 1'. "Then A U {x} is a simply ordered subset which properly
includes A. This is a contradiction.
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(111) implies (IV). Let X be any set. We consider ordered pairs
(A, p) where A C X and p simply orders A. Let S be the set of all
(A, p) such that p well-orders A. If (A,, pl) and (A2, p2) are members
of g, define (A,, p,) < (A2, P2) ill

(a) A. S A2,
(b) P, C P2, and
(c) if a, C A,, a2 C A2, and 02 V A,, then (a,, 02) C P2

In other words, we require that A, be a subset of A2, that the ordering
of A2 be an extension of that of A,, and that the elements of A2,
not in A,, be greater than the elements of A,, relative to the ordering
of A2. It is immediate that < partially orders S.

We prove next that (S, <) satisfies the hypothesis of (Ill) ; that is,
a chain included in S has an upper bound in S. For a chain e C S,
we propose as an upper bound, (A*, p*), where

A* = U {AI(A, p) C Cl and p* = U IPI(A, p) C e}.
Clearly the only question is whether (A*, p*) C S. To show this we
prove that (A*, p*) satisfies the conditions stated at the beginning of
Section 7. The proof that p* is antisymmetric is left as an exercise.
It remains to prove that if B is a noncnnpty subset of A*, then there
exists bo C B such that (b(j, b) C p* for each b C B. For such a B
there exists (A,, p,) C e such that B fl A, 7`- 0. In turn, there exists
bo C I3 n A, such that (be, b) C p, for all b C 13 () A,. More generally,
for each b in 13 there exists p with (A, p) C C such that (bo, b) C p.
Indeed, given b in 13, there exists (A, p) C e with b C A. If A e A,,
then (bo, b) C p,. Otherwise, A D A, and, hence, p D p,. Then
(bo, b) C p and so (b,,, b) C p*, as desired.

Since the hypothesis of (Ill) is satisfied, we may infer the existence
of a maximal element (A, p) of S. The proof will be complete if it
can be shown that A = X. To this end assume the contrary, that
x C X - A. We now adjoin x to A and extend the ordering p of A
to one of A U {x} by defining x to be greater than each element of A.
This yields the ordered pair (A', p'), where A' = A U {x} and
p' = p U { (a, x)la C A'{ . Then p' well-orders A' and hence, (A', p') C S.
Moreover, (A, p) < (A', p'), which is a contradiction, since (A, p) is
a maximal element. Hence, A = X.

(IV) implies (I). Let X be any set. By (IV), Xcan be well-ordered,
so we assume that this is given. If A is a noncmpty subset of X, let
f(A) be the first element of A. Then f is a choice function for X.
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In mathematics, labeling a proposition with the name of an individual
usually indicates his priority to that result. This is not the case in the
assignment of names to be found in the literature to the above equivalent
formulations of the axiom of choice or in the extensive variety of other
formulations which have proved to be useful. We have made what is a
relatively common assignment of names.

It should be mentioned that prior to the emergence of a variety of
statements equivalent to the well-ordering theorem, transfinite induction
was a standard proof technique. This has now given way to the use of
some form of Zorn's lemma or a maximal principle. f Usually the modern
procedure yields a shorter proof.

EXERCISES
8.1. Establish the axiom of choice in the form (AC,) for finite collections of

sets by proving, by induction, that if A, X A2 X .. X A. is empty, then at
least one A; is empty.

8.2. The following is known as Hilbert's axiom. If 6' is the set of all proper-
ties P such that there exists at least one object having property P, then there
exists a function a whose domain is 6' and such that e(P) is an object having
property P. Prove that this axiom is equivalent to the axiom of choice (AC2).

8.3. Following A. Mostowski, let us denote by [n] for n = 1, 2, . the follow-
ing case of (AC,) : For every disjoint collection (t of n-element sets A, there exists
a set B such that, f o r each A in C 3 , B (l A has exactly one member. Without
using the axiom of choice, prove that [2] implies [4].

8.4. Referring to the proof that (I) implies (II) in Theorem 8.2, show that
Ua.* = lub a*.

8.5. In the proof that (I11) implies (IV) in Theorem 8.2, show that p* is
antisymmetric.

8.6. Demonstrate the equivalence of the axiom of choice with the following
statement: If A and B are nonempty sets and p is a relation with domain A
and range B, then there exists a function f : A --b- B such that f C p.

8.7. Show that if p partially orders A, then there exists a simple ordering
relation p' such that p' Q p and p' simply orders A. (Hint: Consider the collec-
tion of partial ordering relations which include p and use Zorn's lemma.)

9. Further Properties of Cardinal Numbers

With the axiom of choice available, some extensions and some simplifi-
cations of properties of infinite cardinals are at hand. It will be recalled

t Of course, Zorn's leninna is not a substitute for transfinite induction in cases of justifying
definitions.
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that for reasons of expediency one application has already been made -
to the proof of Theorem 4.4. Another occurs in our next result.

THEOREM 9.1. Any infinite set includes a subset of cardinal
number No.

Proof. Let X be an infinite set. It is sufficient to exhibit a func-
tion g on N into X which is one-to-one. Let f be a choice function
for X. Then we define g(O) = f(X) and, proceeding inductively, let
g(n + 1) = f(X - 1g(O), , g(u) }). This is possible for each n, since
otherwise X would be finite, which is contrary to assumption. Ac-
cording to Theorem 2.4 there exists a function g on N into X such
that, for each n in N, g(n) = f(X - {g(0), , g(rr - 1) } ). Now g is
one-to-one. For consider r and s in N with r s. It is no loss of
generality to assume that r < s and we do so. Then g(r) (, X -
Ig(0), . g(r), , g(s - 1) } and hence g(s), as a member of this
set, is necessarily distinct from g(r).

COROLLARY I . If A is an infinite set then fl > Ro.

The proof is left as an exercise.

Combining Corollary 1 with Theorem 3.5, bto is established as the
least infinite cardinal. Theorem 9.1 has another interesting consequence,
which places in sharp relief a basic difference between finite and infinite
sets.

COROLLARY 2. An infinite set is similar to a proper subset of
itself.

Proo/. Let A be an infinite set. According to Theorem 9.1 we may
write A as the union of disjoint sets C NJ and B. 'T'hen the set
A, = { C N - 1011 U B is a proper subset of A. Moreover,
f: A -- A,, where f(x) = a,, t., if x = a,, and f(x) = x if x C B, is a
one-to-one correspondence between A and A,.

We infer from this corollary and Theorem 3.3 that a set is infinite iff
it is similar to a proper subset of itself. What is for us a characterization
of an infinite set, has been taken as the definition of an infinite set in
some treatments (Dedekind, 1883).

Another simple application of the axiom of choice produces for
cardinal numbers the analogue of Theorem 7.7 for ordinals.
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TIIEOREM 9.2. If C is a set of cardinal numbers, then there
exists a cardinal number greater than each cardinal in C.

Proof. A (noncrnpty) set C of cardinal numbers is a disjoint collec-
tion of sets. With the axiom of choice it is possible to define a repre-
sentative set of the form (t = C C1 where ,, = u. Clearly,
card U Ct > u for each a in C. Hence card 2" > u for each u in C.

The hierarchy of infinite cardinals in order of increasing magnitude
which was mentioned in Section 3 can now be described with more
accuracy. First there is the natural number sequence according to
Theorem 3.4. Next we have No, by Corollary I of Theorem 9.1 and
Theorem 3.5. 'T'hen we get successively greater cardinals 2k°(= K),
2K, by application of 'Theorem 3.6. After all of these we gel. a still
greater one, say p, by application of Theorem 9.2. Then Theorem 3.6
may be applied again to extend the array by 271, 2"°, , and so on.

A more profound consequence of the axiom of choice is that every
set of cardinal numbers is well-ordered by the ordering relation < in-
troduced for cardinals. To prove this, along with related properties of
cardinals, we employ the fact that the axiom of choice implies the well-
ordering theorem which, in turn, implies that every cardinal number
can be represented by a well-ordered set. From this it follows, first,
that any two cardinals are comparable in view of the Corollary to
Theorem 7.4. Second, it establishes a correspondence between cardinal
numbers and ordinal numbers whereby with a cardinal number is
associated the (nonempty) set Z(c) of all ordinals having a representa-
tive of cardinality c. Specifically, if C is a given set of cardinals,

(c, a,)jc C C and a,; is the least nrcrnber of Z. (c) I

is a function, f,-with C as do'rnain and a set A of ordinals as range.
Clearly, f is one-to-one and consequently a one-to-one correspondence
between C and A. Further, it is easily shown that f is an order-preserving
map. It follows that the simply ordered sets C amid A are isomorphic
and since one is well-ordered, so is the other. We record this result as
our next theorem.

THEOREM 9.3. Any set of cardinal numbers is well-ordered.

This property of cardinals is the basis of the following notation for
infinite cardinals. If a is the ordinal number of the set of infinite cardinals
less than an infinite cardinal u, then u is designated by N. The desig-
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nation of N as No is an instance of this notation. Again, Mr stands for the
immediate successor of No, and consequently the continuum hypothesis
may be phrased as the assertion that 2", = 1!ti. This has been extended to
the generalized continuum hypothesis which asserts that 2"- = i`t.i I.

Another consequence of the axiom of choice is that multiplication
and addition of infinite cardinals arc idcmpotent operations; that is,
if it is an infinite cardinal, then u2 = u and 2u = u. To prove these
results we use the fact that the axiom of choice implies Zorn's lemma.
The following proof of the idcmpotcncy of multiplication is due to
Zorn (1944).

To facilitate the exposition we introduce a temporary definition: To
say that a set A has property 9, symbolized i(A), shall mean that A
has at least two distinct members and A2 = 1. Additional properties
of such sets, as well as some properties of related sets, are derived below.

I. If i(A), then A is infinite.

The proof is left as an exercise.

12- If #(A) and A > 11, then A + 13 = t1.

Proof. Let ao and ar be distinct members of A and suppose that
13NA0CA.Then

A<A+ 13=AX njUAo-ark

and it follows that A 13 = A.

13- If.9(A), then A + A = A.

Proof. The assertion is a corollary of 12-

14- If 4(A) and 0 < lJ < A, then All = A.

Proof. Let b E B and let B - A' C A. Then

A=AX U <AX 13=AA'=A->-AP«XA=A,
which yields the asserted conclusion.

I. If ,4(A,), Ao C A, and I - Ao < 71o, then 4(A).

The proof is left as an exercise.

Is. Let A be a set with disjoint subsets Ao and Al such that (i) there
exists a one-to-one correspondence f between Ao and Au X Ao,
(ii) 9(A,), and (iii) lo < A. Then there exists a one-to-one correspond-
ence g between C = Au U Ar and C X C such that g D f.
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Proof. Such a correspondence exists provided there is a one-to-one
correspondence between the sets C - Ao = A, and C X C - Ao X
Ao = (Ao X A,) U (At X Ao) U (At X A,). In turn, this is the case if
Ao X A, + A, X Ao + A, X A, = A1,. This is trivial if A = 0. If
Ao - 0, its validity follows from 14 and 13.

The next two results are special cases of I6. That is, both assert the
existence of a one-to-one correspondence between a subset C of 'A and
C X C which properly extends a given mapping of the same variety.

L. Assume that Ao is a finite subset of the infinite set A and that f
is a one-to-one correspondence between Ao and Ao X Ao (so that As
has at most one member). Then there exists a proper extension g of f
of the type described in 16.

Proof. As an infinite set, A has a denumerable subset arid, therefore,
a subset A, such that :1(Ar) (Theorems 9.1 and 4.3). Since Ao is finite,
we may assume that Ao (1 A, = 0. Moreover Ao < A,. Thus, 16
may be applied and provides the desired extension.

18. Assume that Ao C A, g (Ao), A - A > A0, and that f : Ao -,.
A0 X Ao is a one-to-one correspondence. Then f has a proper exten-
sion g of the type described in Is.

Proof. In view of 16 and 12 it is sufficient to determine a subset A,
of A - A,; which has A0 as cardinal number. Such a set exists by vir-
tue of the assumption that A - Ao > A0.

We can now quickly dispose of the principal theorem.

THEOREM 9.4. If A is an infinite set, then ii (A). Irr other words,
if u is an infinite cardinal, then u2 = it.

Proof. Consider the collection if of all one-to-one correspondences:
f : A' -+- A' X A', where A' C A. This collection is. nonempty since
A has a denumerable subset and, as a collection of sets, is partially
ordered by inclusion. Each chain e included in if has an upper bound
in 9; indeed, U e qualifies. The proof of this is left as an exercise.
Hence, by Zorn's lemma, if has a maximal element fo. Now fo is a
one-to-one correspondence be a subset A0 of A and Ao X Ao
having no proper extension. In view of 17 the set Ao is not finite
and, therefore, is idempotent. So, according to I8, it is false that
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- Ao > Ao, and hence A - Ao < Au according to Theorem 9.3.
Since g(Ao), the last inequality implies, using I5, that 9(A).

'T'HEOREM 9.5. If u is an infinite cardinal, then 2u = u.

Proof. In view of the preceding theorem this follows from I;,.

It is left as an exercise to deduce from this theorem the following,
whereby the arithmetic of infinite cardinals is reduced to a triviality.

TI-IEOREM 9.6. If u and v are infinite cardinals, then u + v
uv = max { u, v I.

EXERCISES
9.1. Consider the following three assertions about a set X.

(i) X is infinite.
(ii) There exists a one-to-one mapping on X onto a proper subset.
(iii) There exists a one-to-one mapping on N into X.

Show that each of these assertions implies the other two if the axiom of choice
may be used. Which of these six implications can be proved without the axiom
of choice?

9.2. Expand the proof in the text that any set of cardinals is well-ordered.
9.3. Prove property I,.
9.4. Prove property I5.
9.5. Supply the missing part of the proof of Theorem 9.4.
9.6. Prove Theorem 9.6.
9.7. Extend Theorem 9.6 to the case where only one cardinal is infinite.
9.8. Give a proof, using Zorn's lemma but no properties of well-ordered sets,

that any two cardinal numbers are comparable. Hint: Recalling the analysis
in Section 3, it is sufficient to prove that if A and B are sets, then there exists
subsets Ao and Bu of A and B respectively such that Ao Bo and either A = A
or Bo = B. Prove this by applying 'corn's lemma to the partially ordered set
(1, C), where if is the collection of all one-to-one correspondences f: A' -i- B'
with A'CAandB'CB.

9.9. Devise a direct proof that if u is an infinite cardinal, then 2u = u. Hint:
Let S = u and 7' = (0, 1). Let be the collection of all pairs (A, fA) where A
is a subset of S such that A X T = A and fA is a lixed mapping which demon-
strates the similarity of A X T and A. Show that e5' is nonernpty and is partially
ordered by the relation <, where (A, fA) < (B, fit) means that A C B and
AI A X T = fA. Then deduce that Zorn's lemma may be applied.

9.10. Deduce from the result in Exercise 9.9 that if the set B has an infinite
subset A such that A < B, then B - A = B.
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9.11. Use the results of Exercises 9.9 and 9.10 to give another proof of Theo.
rem 9.4. Hint: Let u be an infinite cardinal and u. Then consider the collec-
tion of all pairs (A, fn), where A is a subset of S such that A X A = A and fA
is a fixed mapping which demonstrates the similarity of A X A and A.

9.12. Show that for infinite cardinals r, s, u, and v, if r < s and u < v, then
r + u < s + v and ru <.cv.

10. Some Theorems Equivalent to the Axiom of Choice

In the preceding section we proved, among other things, that the
axiom of choice implies that (i) any two cardinals are comparable,
(ii) if u is an infinite cardinal, then u2 = u, and (iii) if u and a are infinite
cardinals, then u + v = uv. It is a remarkable fact that each of (i),
(ii), and (iii) is equivalent to the axiom of choice. As a preliminary to
the proofs required to substantiate this statement, we return to the
discussion of the relation between cardinal and ordinal numbers which
appears prior to Theorem 9.3. If we understand by an aleph a trans.
finite cardinal number which has a well-ordered set as a representative,
then the first step in the proof of Theorem 9.3 amounts to the observa-
tion that the axiom of choice implies that every transfinite cardinal is
an aleph. The converse of this implication is easily verified, so the axiom
of choice is equivalent to the assertion that every transfinite cardinal
is an aleph. Without using the axiom of choice it is possible to prove
the following results concerning alephs.

TIIEOREM 10.1. To each cardinal number c there corresponds
an aleph ti(c), which is not less than or equal to c.

Proof. If c is a finite cardinal, we may choose Ho for the cardinal
in question. So assume that c is transfinite. We now make a definition.
For an ordinal number a, all sets of order type a are similar; we
denote the common cardinality of such sets by a and call this the
power of a. Now let A be the set of all ordinals cx such that a < c.
Then A is an infinite set because every natural number belongs to it
and A is well-ordered, being a set of ordinals. I fence the order type of
A is a transfinite ordinal l; and & is some aleph, rt(c). We prove that
$t(c) is not less than or equal to c by deriving a contradiction from the
contrary assumption. So assume R(c) c. Then, since R (c) = &, we
have i < c, whence C A. Hence 13 = (01(3 < El C A, since S < l;
implies that 0 < E c and E (Z B. Now B = E by 'T'heorem 7.5 and
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A by the definition of . It follows that A is ordirially similar to
one of its initial segments, contradicting Theorem 7.2.

THEOREM 10.2. Let c be a transfinitc cardinal number and 1`t
an alcph. If cR = c -{- K, then either c > b or c < R.

Proof. Let C and A be disjoint representatives of c and fit, respectively.
By assumption we may take A to be well-ordered. Then

CXA=cm =c - Fm,
and hence there exist disjoint subsets C, and Ar of C X A such that

C,UA,=C'XA, Z;,=c, and fl,=M.
Now, either (i) there exists an element b, of Csuch that for all a in A,

(b,, a) C C1, or (ii) for every element b of C, there exists an element a of
A such that (b, a) V C1. If (i) holds, let Az be {(b,, a)la C A}. Then
Az C C1, i = ti, and hence c > t. If (ii) holds, let rp(b) be the least
clement of A such that (b, Wp(b)) C A, and let Cz be {(b, (p(b))Ib C C).
Then Cz C A,, t:;z = C:, and hence, r. < R.

We can now prove the theorems in question.

THEOREM 1 0.3 (IIartogs). The axiom of choice is equivalent to
the assertion that any two cardinal numbers are comparable.

Proof. It remains to prove that if any two cardinals are comparable,
then the axiom of choice is valid. Let C be a given set and c = G.
In view of Theorem 10.1 and the assumed comparability of cardinals,
there exists an alcph R(c) such that c < bt(c). It follows that C is
similar to a subset of a well-ordered set, whence follows the existence
of a relation that well-orders C.

THEOREM 10.4 (Tarski). The axiom of choice is equivalent to
the assertion that if u and v are infinite cardinal numbers, then
u -l- v = uv.

Proof. It remains to deduce the axiom of choice from the hypothesis
u + v = uv for infinite cardinals a and v. Let c be an infinite cardinal
and K(c) be the aleph of Theorem 10.1. Theorem 10.2 is applicable
and we conclude that either c > bt(c) or c < KK(c). The inequality
c > K(c) is impossible in view of Theorem 10.1. Hence c < 1!I(c),
from which it follows that every transfinite cardinal is an aleph. This,
in turn, yields the axiom of choice.
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'I' I I E 0 R E M 10. 5 (Tarski). The axiom of choice is equivalent to
the assertion that if It is an infinite cardinal number, then u2 = u.

Proof. It remains to deduce the axiom of choice from the assumption
that 112 = u for infinite cardinals It. Let c and d be infinite cardinals.
Then c2 = c, d2 = d, and (c + d)2 = c -}- d. Since (c + d)2 = c2 +
2cd + d2, it follows that c + d = c +- 2cd -I- d, whence

cd < 2cd < c + 2cd A- d = c + d.

But we may also set c = c, +- 1 and d = d, -}- l for cardinals c, and
d,, to conclude that

cd = (c, + 1) (d, + 1) = c,d, + c, + di + 1
> 1 +c,+d,+1 =c+d.

Hence our assumptions imply that c + d = cd for infinite cardinals.
But this implies the axiom of choice according to the preceding
theorem.

EXERCISES
10.1. Deduce the axiom of choice from the hypothesis that every transfinite

cardinal is an aleph.
10.2. Another of Tarski's results concerning the axiom of choice asserts that

it is equivalent to the proposition

if2u <it + v, then u <v,
while the proposition

if 2u > it + v, then u > v
can be proved without the axiom of choice. Prove this result.

10.3. Still another of Tarski's theorems states that the axiom of choice is
equivalent to the assertion that for any cardinals it, v, and tv, the inequality
u + w < v + zv implies that it < v. Prove this.

10.4. Prove Tarski's theorem stating that the axiom of choice is equivalent
to the assertion that for any cardinal numbers it, v, and tv, the inequality
uw < ow implies u < v.

10.5. It is not known whether the formula 2u _ u, which follows from the
axiom of choice (Theorem 9.5), implies the axiom of choice. Attempt a proof

of this.

11. The Paradoxes of Intuitive Set Theory

The theory of sets which has been l)resemcd so far is that used by
mathematicians in their daily work. Many theorems which are accepted
by a majority of the mathematical couttnuttity, both past and present,
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rely on this theory. Unfortunately, it is not free of difficulties. Indeed,
as mentioned earlier, it yields contradictions. However, matters are not
as bad as this fact might indicate. This is suggested, at least, by its very
inclusion in a present-day text. A firm vantage point from which to view
the "reliability" of Cantor's theory is one of the axiornatizations which
have been devised. The version of axiomatic set theory which we shall
discuss later (Chapter 7) is based on the conclusion that the known
contradictions of Cantor's theory are associated with "too large" sets.
These are not the sort which occur ordinarily in mathematics.

Before discussing the best-known contradictions, a preliminary remark
is in order. A cornerstone of Cantor's theory is that we are guided by
intuition in deciding which objects are sets and which are not. For this
reason the name "intuitive set theory" is often applied to it. The
implicit faith that individuals have in their intuition seems to be re-
sponsible for the contradictions of intuitive set theory commonly being
called paradoxes. This is a misnomer, since the connotation of the
word "paradox" is that of a seemingly, or superficial, contradiction,
whereas the examples in question are bona fide contradictions. As such,
they should be labeled "antinomies," which is the correct technical
word to describe their status. Few do this, however.

The principle of intuitive set theory which asserts that every property
determines a set may be regarded as its Achilles' heel. Indeed, when used
without restriction, this principle yields at least three sets from which
logical contradictions can be derived. The three which we shall discuss
are called the Russell paradox, the Cantor paradox, and the Rurali-
Forti paradox.

The simplicity of the Russell paradox is apparent from the fact that
it was possible to mention it as early as Section 1.2. We consider it now
in more detail. The formula which Russell considered is

xCZx or --i(xCx)
where, in the second version, we have used one of the standard symbols
for negation (--1). According to the principle of abstraction, this formula
determines a set R such that x C R iff --i (x E x). In particular,

R C R ill -' (RC R),
which is logically equivalent to the contradiction

R C R and -(R C R).
We note that R (assuming that it exists) is a very large set. For example,
its defining property is satisfied by all objects which are not sets, since
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such objects can have no members and in this event cannot be members
of themselves. Moreover, the property is satisfied by most sets; to men-
tion two examples, the set of even integers is not an even integer, nor
is the set of all polynomial functions a polynomial function. It is only
when one turns to such figments of the imagination as the set of all sets,
or the set of all abstract ideas, that violations of the defining property
of R can be found.

The Cantor paradox, which was discovered by Cantor in 1899 but
which was first published only with his correspondence in 1932, is
derived from the set defined by the formula

x is a set.

Let e be the set defined by this formula. Then C is the set of all sets.
By Theorem 3.6, W(C) > G. Also, since C is the set of all sets and 6'(C)
is a set (the set whose incnibers are the subsets of C), o'(C) C C. Hence,
(i'(C) < c or, in other words, it is false that (t'(C) > G. Thus, it follows
that both "m((O) > 0" and the negation of this statement are valid. This
is a contradiction.

The Burali-Forti (1897) paradox, which was known to Cantor as
early as 1895, is derived from the set defined by the formula

x is an ordinal number.

The set 1', which it determines by virtue of the principle of abstraction,
is that of all ordinal numbers. As a set of ordinals, 1' is well-ordered
according to Theorem 7.6, and hence has itself an ordinal number y.
By Theorem 7.5, s(y) is a well-ordered set of ordinal number y; hence
s(y) is ordinally similar to F. With F as the set of all ordinals, y C 1'
and hence s(y) is an initial segment of 1'. Thus, we have proved that I'
is ordinally similar tQ one of its initial segments. This is a contradiction
of Theorem 7.2.

Instead of offering the above paradoxes as proofs of the assertion that
the unrestricted use of the principle of abstraction yields a contradictory
theory, we may say that if we adhere to ordinary logic, then the
paradoxes demonstrate that it is false that corresponding to every
property there is a set of objects having that property. Interestingly
enough, the converse is also false. That is, it is false that every set has a
defining property. The well-known proof of this. is due to Skolcin (1929)
and is as follows. It is possible to map the set of real numbers into a
collection of sets in a one-to-one fashion. For example, we can assign
to a real number x the set of all real numbers less than x. Since the set
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of all real numbers is uncountable, it follows that there exists an un-
countable collection of sets. So, if every set has a defining property, the
set of defining properties is uncountable. On the other hand, a property
(written in English) is a finite sequence of letters of the English alphabet.
The set of all such sequences is denumerable so that, in particular, the
set of all properties is denumerable. Hence, there exist sets without
defining properties.

Intuitive set theory with its paradoxes certainly invites a critical
examination with the goal of creating a theory which is both consistent
and which enjoys as many features of the intuitive theory as is possible.
Of the points of departure which may be taken in this matter, that of
developing set theory as a formal axiomatic theory has been popular.
The present-day status of such axiomatic theories is this: they are
flexible enough to permit one to carry on essentially as in intuitive set
theory, and they circumvent the classical paradoxes (and thus suggest
that they are consistent) ; however, no one of them has been proved to
be consistent.
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natural numbers from the Peano axioms in Dedckind (1888) (reproduced in
Dcdekind (1932)] is well worth reading. In H. Wang (1957) there is an inter-
esting account of how Dedekind arrived at his characterization of the natural
numbers. The standard classical account of the development of properties of
natural numbers and their extension to the real numbers (see the next chapter)
is E. Landau (1930).

Section 2. An excellent account of both proof and definition by induction
is to be found in Rosser (1953).

Sections 3-7. For full accounts of the topics considered in these sections,
W. Sierpinski (1958) and A. Fraenkel (1961) should be consulted.

Sections 8-10. For more complete accounts of consequences of the axiom
of choice and propositions which are equivalent to it, Rosser (1953) and
Sierpinski (1958) should be consulted. The proposition known as Zorn's
lemma appears in M. Zorn (1935). Theorem 10.3 is in F. Hartogs (1914).
The various propositions which are equivalent to the axiom of choice and
which have been credited to A. Tarski appear in Tarski (1923).



CIIAP TER 3 the Extension of the
Natural Numbers to
the Real .Numbers

IN THIS CHAPTER we carry out another variety of extension of
(N, -l-, , <), f the systemn discussed in Sections 2.1 and 2.2. Three
successive extensions are made, the last of which yields the real number
system. The first of these may be described as the completion of N_ with
respect to addition-- that is, the minimum enlargement of N to insure
the solvability of all equations of the type x + n = nz with n, m C N.
The extended set is the set Z. of integers. The second extension amounts
to the completion of Z with respect to multiplication--that is, the
minimum enlargement of 'Z to attain the solvability of all equations of
the form. xb = a with a, b C Z and b s 0. The resulting set is the set Q
of rational numbers. The third extension amounts to the completion
ofO with respect to order---that is, the minimmum enlargement of a
which provides least upper bounds for nonempty subsets of Q which
have upper bounds.

In addition to those theorems which are of permanent interest, any
development of the real number system includes a great number of
results having just temporary interest (for example, results which justify
various definitions). Each statement of the latter sort is labeled a lemma,
and if no proof is in evidence the reader can count on his being asked
to supply one in an exercise.

Finally, we mention that elementary properties of operations and
relations for natural numbers are used without explicit reference.

1. The System of Natural Numbers

On the basis of definitions and theorems appearing in Sections 2.1
and 2.2, the natural number sequence (N, ', 0) determines the system

t It better suits our presentation to adopt <, instead of <, as the basic ordering relation
in U.
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of natural numbers, (N, -I-, , <), by which we mean the set N together
with the two binary operations and ordering relation which have been
defined in this set. Below is a list of those properties of +, , and < and
their interrelations upon which this chapter is based. These were all
derived as theorems in Sections 2.1 and 2.2 from the assumption that
(N, ', 0) is an integral system. Thus, for one who has studied Sections 2.1
and 2.2, this section (which is preliminary to the developments described
in the above summary) is simply an abstract of already demonstrated
properties of the system of natural numbers. For anyone who, for some
other reason, admits the following as valid properties of (N, +, , <),
the chapter is self-contained.

The properties of (N, +, , <) to which we call attention are the
following.

A,. x + (y + z) = (x + y) + z.
A2. x+y =y+x.
A3. O+x=x.
A4. x+z=y +zorz+x=z+y implies thatx =y.
Ml. x(yz) = (xy)z.
M2. xy = yx.
Ms. 1X = X.
M4. xz = yz or zx = zy, and z 0, imply that x = y.
D. x(y + z) = xy + xz.

Further, the relation < has the following properties.

01. x < y and y < z imply that x < z (transitivity).
02. For each pair x, y of natural numbers, exactly one of x < y,

x = y, y < x hold (trichotomy).
03. (N, <) is a well-ordered set.
OAR. x <yimpliesthatx+z <y +z anclz +x <z+y (mon-

otonicity of -1- with respect to <).
OA2. x -l- z < y + z or z + x < z + y implies that x < y (can-

cellation property of + with respect to <).
OMI. If z > 0, then x < y implies that xz < yz and zx < zy

(monotonicity of with respect to <).
OM2. If z > 0, then xz < yz or zx < zy implies that x < y (can-

cellation property of with respect to <).

A comment about some of the terminology used above is in order.
The meaning of the statement that an operation has the cancellation.
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property with respect to some relation at hand can be inferred im-
mediately from 0A2. (Although 0M2 involves a restriction, no special
terminology will be introduced as a reminder of this restriction.) When
we state simply that an operation has the cancellation property, we
shall mean with respect to the equality relation. 't'hus a binary opera-
tion * has the cancellation property ifl' each of x * z = y * z and
z * x = z *y implies that x = y. Further, the meaning of the statement
that some binary relation is trichotomous or that a binary operation is
monotonic with respect to some relation should be clear from the above,
examples.

Although the less than relation was given a central position in our
development of the theory of the natural number system, it can be
introduced as an offshoot of the operations of addition and multiplica-
tion and the notion of positiveness which stems from the definition of a
positive natural number as a nonzero natural number. Indeed, since
x < y iff there exists a positive natural number z such that x + z = y,
this characterization of less than may be taken as the definition of less than
in terms of addition and positiveness. Then properties of less than can be
derived as consequences of properties of positive elements, properties of
addition, and properties of multiplication. In such a treatment, parts
As and Mr, of Theorems 2.1.5 and 2.1.7 respectively (which may be
stated as "The sum and the product of two positive natural numbers
is a positive natural number") occupy a key role. As an illustration we
derive 01 within this framework. Assume that x < y and y < z. Then
there exist positive natural numbers u and v such that x -1- u = y and
y + v = z. Hence x + (u -}- a) = z. Since it positive and v positive
imply that u + v is positive, it follows that x < z.

We have called the reader's attention to the foregoing approach to
the theory of order for the natural numbers because we shall employ it
in each of the forthcoming extensions of the system of natural numbers.

2. Differences

This section includes the necessary preliminaries for a definition of
the integers and a rapid development of their properties, all of which is
presented in the next section. In this section the letters "m," "n," "p,"
and "q" will designate natural numbers. The intuitive motivation for
our point of departure is the observation that a solution of x + n = m
is determined solely by m and n in a specific order. Thus ordered pairs
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of natural numbers become the object of study. The way in which one
might naively expect such objects to behave in view of their intended
role is the source of the succession of definitions which we make.

By a difference we shall mean an ordered pair ()n, n). In the set
N X N of all differences we introduce the relation ^'d (the subscript is
for "difference") by defining

(in, n) ',t (p, q) if in + q = p + n.

LEMMA 2.1. -,t is an equivalence relation on N X N.

We shall call a difference (m, n) positive iff m > n. Two fundamental
properties of positive differences arc stated next.

LEMMA 2.2. If (in, n) is positive and (m, n) ^'d (p, q), then (p, q) is
positive. If (in, n) is positive, then there exists a difference (p, 0), with
p > 0, such that ()n, n) -,) (/), 0).

An operation, which we call addition and symbolize by f-, is defined
for differences by

(in, n) + (p, q) = (m + p, n + q)
Clearly, addition is a binary operation in N X N. The motivation for
the definition is the expectation that if x + n = in and y + q = p, then
it should follow that (x + y) + (n + q) = in + p. Properties of addi-
tion which interest us are given next.

LEMMA 2.3. If x, y, u, and v arc differences and x -d u and y ^-',i v,
then x+y' 'du+v.

LEMMA 2.4. Addition of differences is associative and conunuta-
tive. The sum of two positive differences is a positive difference.
Further, addition is cancellable with respect to -,r.

LEMMA 2.5. If x and y are differences, then there exists a differ-
ence z such that z + x

Another binary operation in N X N, which we call multiplication
and symbolize by , is defined for differences by

(in, n) . (p, q) = (mp + nq, rnq + )zp).
Usually we shall write "xy" instead of "x y" for a product of differences.
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LEMMA 2.6. If x, y, u, and v are differences and x -d u and y rvd v,
then xy ^'d UV-

LEMMA 2.7. Multiplication of differences is associative and com-
mutative, and distributes over addition. The product of two positive
differences is a positive difference. Further, multiplication is cancel-
lable with respect to -d for differences other than those of the form
(m, in).

EXERCISES
2.1. Prove Lemma 2.1.
2.2. Prove Lemmas 2.2 and 2.3.
2.3. Prove Lemma 2.4.
2.4. Prove Lemma 2.5.
2.5. Prove Lernma 2.6.
2.6. Prove Lemma 2.7.

3. Integers

Recalling Lemma 2.1, we define an integer to be a -,,-equivalence
class. We shall write

[x1

for the equivalence class determined by the difference x. (The new
subscript is for "integer.") The set of integers will be symbolized by Z.

We shall call an integer positive iff one of its members is a positive
difference. It follows from Lemma 2.2 that if [x]; is positive, then every
member of [x], is positive. The set of positive integers will be symbolized
by Z-1 .

We consider next a relation from Z X Z into Z :

{(([x];, [y],), [x d- y];)l x and y are differences}.

According to Lemma 2.3 this relation is a function which, by virtue of
its form, is a binary operation in Z. We call this operation addition
'and symbolize it by +. Thus,

[x]i + [y], _ [x + y],.

LEMMA 3.1. Addition of integers is associative and commutative,
and has the cancellation property. Further, the sum of two positive
integers is a positive integer.
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LEMMA 3.2. If x and y are integers, then there exists exactly one
integer z such that z + x = Y.

From this result it follows that if x is an integer, then there exists
exactly one integer, which we call the negative of x and symbolize by
-x, such that

(-x) + x = x ± (-x) = [(0, 0)1,.
Finally, we consider the following relation from Z X Z into Z:

{(([x];, [y],), [xy];)l x and y are differences}.

According to Lemma 2.6 this relation is a function which, by virtue of
its form, is a binary operation in Z. We call this operation multiplica-
tion and symbolize it by . Thus

[XI. [_fl, = [.ry l,.

LEMMA 3.3. Multiplication is associative and commutative, dis-
tributes over addition, and has the cancellation property if (0, 0) is
not a member of the factor to be canceled. Further, the product of
two positive integers is a positive integer.

Now let us tidy up our notation for the integers. The first step is the
observation that the set Z° of integers of the form [(n, 0) J; with n E N
and the set of integers of the form [(0, m)], with in C N - {0} are dis-
joint and exhaust Z. The former statement is obvious. To prove the
latter, consider any integer [(p, q)Jj. Exactly one of p > q and p < q
holds. In the former case, p = q + it with it C N, and hence [(p, q)]i =
[(n, 0)] C Z°. In the latter case, q = p -l- in with in C N - {0) and
[(p, q)]i = [(0, rn)J which completes the proof.

It is a straightforward exercise to demonstrate that the ordered triple
whose coordinates are, in turn, Z°, the map on Z° which takes [(n, 0)];
into [(n + 1, 0)J and [(0, 0)J; is an integral system. 't'heorem 2.1.8
implies that the mapping f on N into Z such that f(n) = [(n, 0)]j is
one-to-one, onto Z°, and preserves addition, multiplication, and less
than. f We summarize these properties off by calling it an order-isomor-
phism of N onto Z° and indicate the relationship of L° to N by referring
to Z° as an order-isomorphic image of N (or, saying that L° is order-
isomorphic to N). Parenthetically we remark that it should be clear

t'Tu be precise, Theorem 2.1.8 states that f(x + y) = f(x) -I- f( Y), f(xy) = f(x)f(y), and
x < y iflf f(x) < f(y). The last property implies, in turn, that x < y iff f(x) < fly), according
to Exercise 1.11.9.
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that these definitions are applicable to any two systems each of which
consists of a set along with two binary operations and an ordering rela-
tion in that set. Thus we may apply the definitions to other such pairs
of systems. The order-isomorphism of N onto Z° suggests that we call
the members of Z° the integers which correspond to the natural numbers
and adopt "Oi," "1 i," "2i," as names for them. We shall do this,
which means we agree that

ni = {(n, 0)]t if n C N.

Since the remaining integers (that is, the members of _L - Z°) have the
form 1(0, in)]i with in C N - {0], and since

{(0, m)]i = - [(in, O)]i = -ini,
we acquire "-1i," "-2i," as names for the so-called negative
integers. Ilcnceforth we may write, therefore,

Z = { ... , - 2 i, -1 i, 0;, I i, 2 i, ...) .

We summarize our results concerning (Z, +, , Oi, 1 i, Z ), the system
of integers, in the following theorem. The theorem does not include all
the properties which have been stated. However, in the exercises for
this section, the reader is given the opportunity to show that the prop-
erties listed in the theorem are complete in the sense that from them
follow as logical consequences all others which have been mentioned or
might be expected. In particular, it is implied that from the properties
listed it may be inferred that for each integer x the equation z + x = Oi
in part (4) has a unique solution (which we have already agreed to
symbolize by -x). Then the notation "y - x" [which appears in
part (14) of the theorem] may be introduced as an abbreviation for
"y -i- (-x)." Further, the exercises call for the derivation of all expected
properties of less than, as defined in part (14).

TIIEOREM 3.1. The operations of addition and multiplication for
integers, together with Oi, 1 i, and the set Z+ of positive integers, have
the following properties for all integers x, y, and z.

(1) x + (y + z) = (x + y) + Z.
(2) x + y =y+x.
(3) Oi + x = x.
(4) There exists an integer - such that z + x = 0i.
(5) x(yz) = (xy)z.
(6) xy = yx.
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(7) 1 ix = x.
(8) x(y + z) = xy + xz.
(9) xz = yz and z 54 Oi imply that x = y.

(10) 0i 1 i.

(11) x,yEZi imply that x+yCZ+.

(12) x, y E Z+ imply that xy C Z'-.
(13) Exactly one of x C Z+, x = 0, -x C Z I- holds.
(14) If < i is defined by x < i y if y - x c z+, then < i simply

orders Z and well-orders (Oil U Z+.

EXERCISES
3.1. Prove Lemma 3.1.
3.2. Prove Lemma 3.2.
3.3. Prove Lemma 3.3.
3.4. Prove part (13) of Theorem 3.1.
Remark. Exercises 3.5-3.8 arc concerned with proving that from the prop-

ertics of (-7,, +, , 0i, 1;, Z+) in Theorem 3.1 can he deduced the other proper-
tics mentioned in this section and the familiar properties of less than.

3.5. From properties (1), (3), and (4) of addition, prove that

(i) addition has the cancellation property,
(ii) for each x the solution of z -I- x = Oi is unique, and

(iii) for each x and y, the equation z + x = y has a unique solution.

3.6. Prove each of the following properties of negatives of integers:

-(x -f y) = -x -y, (-x)y = -(xy), (--x)(-y) = xy.
3.7. Using properties of addition and multiplication, prove that

(-1i)x = -x.
3.8. Prove each of the following properties of the system of integers.

(i) x is positive iff 0 < i X.
(ii) The square of a nonzero integer is positive.
(iii) < i is transitive.
(iv) For each pair x, y of integers, exactly one of x <i y, x = y, y <i x holds.
(v) x<iyiffx+z<iy+z.

(vi) If 0 <i z, then x <iy if-f xz <i yz.

4. Rational Numbers

The steps which precede the definition of a rational number parallel
those which lead to the definition of an integer. Now we concern
ourselves with the solution of equations of the form xb = a where a
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and b are integers and b 54 0;. So again we consider ordered pairs of
the numbers at hand but with the quotient (instead of the difference)
in mind as the intended interpretation. Since the formal developments
are so similar to those in the two preceding sections, our treatment will
be rather summary. The letters "a," "b," "c," and "d" will designate
integers in this section.

An ordered pair (a, b) with b 0 0; will be called a quotient. The
quotient (a, b) will be written as

a

b

The relation -y is introduced into the set of all quotients by defining
a c iff ad=bc.bd

This is an equivalence relation on the set of all quotients and has the
further property that

ac a
if c O 0;.bcb

We shall call a quotient b positive if ab is a positive integer. Further,

we introduce operations of addition and multiplication into the set of
quotients by way of the following definitions:

a c ad -I--bc
b + d bd

a c ac

b d bd

Since b 0 0; and d 0 0; imply that bd 34 0 these are operations in the
set of quotients.

LEMMA 4.1 . If x, y, u, and v are quotients and x rvq u and y -y v,
then x + y Ny u + v, xy Nq uv and, if x is positive, then u is positive.

In summary, this lemma asserts that the equivalence relation defined
for quotients has all expected substitution properties. We forego proving
for quotients the analogues of the properties derived in Section 3.2 for
addition, multiplication, and positive elements. Instead, we turn to the
Nq-equivalence classes to obtain the rational numbers.

A rational number is a -,equivalence class of quotients. The ra-
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tional number having the quotient x as a representative we write, for
the moment, as

[x],.

The letter "s" is intended to refer to "rational"; we do not use "r"
since we want to reserve it for real numbers. The set of rational numbers
will be symbolized by Q.

We shall call [x], positive iii it contains a quotient y such that y is
positive. It follows from Lemma 4.1 that if [x], is positive then each of
its members is positive. The set of positive rationals we symbolize by Q+.

The definitions of addition and multiplication for rationals are

[x], + [y]n = [x + y13,
[XI. [y], = [xy]8.

Of course, Lemma 4.1 plays a crucial role in these definitions.
Next we make a further definition:

a,=[a] for aCZ.

Clearly, [ (a, a,) I a C Z)
to-one and, since

is a function on Z into Q. Further, it is one-

a, + b, _ (a -I- b)
a,b, _ (ab),,

the operations of addition and multiplication are preserved under this
mapping. Finally, the image a, of an integer a is a positive rational
number ifl' a is a positive integer. This last property implies that if <,
is the ordering relation which can be defined in O in terms of its positive
elements (see below), then a <; b ill' a, <, b,. Thus, the mapping
a -+- a, is an order-isomorphism. The members a, of this order-iso-
morphic image of Z in 0, we shall call integral rational numbers.

There follows one comprehensive theorem concerning properties of
(Q, +, , 0 1 (Q 1), the system of rational numbers.

THEOREM 4.1. The operations of addition and multiplication for
rational numbers, together with 0 1 and the set () i- of positive
ratiohals have the following properties for all rationals x, y, arid z.

(1) x+ (y+z) _ (x+y) +z.
(2) x + y =y+x.
(3) 0, + x = x.

(4) There exists a z such that z + x = 0,.
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(5) x(yz) = (xy)z.
(6) .y = yx.
(7) 1.x = x.
(8) If x 7-1 0., there exists a z such that zx = 11.
(9) x(y -I- z) = xy + xz.

(10) 1.7 0..
(11) x,yCQ,+imply that x+yCQt.

(2;t.(12) x, y C Q' imply that xy C
(13) Exactly one of x C QF-, x = 0., -x C Q'- holds.
(14) If P is the intersection of all subsets of Q3 which contain 1,

and are closed under addition, then, for each x C Q1', there
exist a, b C P such that xb = a.

In the exercises the reader is asked to prove the various parts of this
theorem [including a more familiar formulation of (14)] and to derive
some of the immediate consequences of these properties of the system
of rational numbers. Certain results in the latter category are worthy of
comment. First, since addition of rationals enjoys the same properties as
does addition of integers [properties (1)- (4) of Theorems 4.1 and 3.1,
respectively], the results [derived from (1)-(4) of Theorem 3.1 J which
appear in Exercises 3.5 and 3.6 hold for rationals.

Next, since the basic properties of multiplication [parts (5), (7),
and (8) of Theorem 4.11 for nonzero rationals mimic properties (1), (3),
and (4) of addition, with 1. in place of 0., we may infer the following
multiplicative analogues of the results in Exercise 3.5.

(i) xz = yz and z 0, imply that x = y.
(ii) For each x 0, the solution of zx = 1, is unique. This solution

is called the inverse of x and is symbolized by x-'.
(iii) For given x and y with x 5 0., the equation zx = y has a unique

solution.

Finally, we call attention to the fact that if less than, which we symbolize
by <., is defined in Q by

x<.y ilf y - xCQ'
then it enjoys all of those properties stated in Exercise 3.8 for <c, since
the earlier proofs carry over without change.

We are now in a position to simplify the notation for rationals. The
string of identities

l

CaavJA

tiiJ= 8 = [1J]e L1 tie' = aiba
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shows that each rational can he written in terms of integral rational
numbers.

We shall drop the subscript "s" from now on (the context should
make plain whether a. or a is the appropriate entity) and further, agree
that

b or (when convenient) alb

is another name for ab-1. In this way we obtain the familiar notation
for rationals.

In practical terms this means that we agree to adopt names of repre-
sentatives (that is, members) of rational numbers as names of rational
numbers. To clarify this remark, let us consider, for example, the
rational number

C[(2, Mil
«3, 0)]=B

By our convention, "2/3" is a name of this rational number. The
statement "2/3 = 4/5" means that "4/5" is another name of the sartu:
number. This is true iff

C3JA = C5Js'
which, in turn, is true ill 2 5 = 4 3. Since 2 5 4 3, the original
statement is false. In general, the same type of analysis yields the follow-
ing results for rational numbers:

alb = c/d iff ad = cb,
alb + c/d = (ad + bc)/bd,

(a/b) (c/d) = ac/bd.
We derive next two significant properties for rational numbers. At

this point we begin to use elementary properties of rationals without
explicit references.

THEOREM 4.2. Between any two distinct rational numbers there
is another rational number.
Proof. Suppose that r, s E Q with r < s. It is sufficient to prove that
r < (r + s)/2 and (r + s)/2 < s. To prove the first inequality we
start with r < s and infer, in turn, r + r < r + s, 2r < r + s, and
r < (r + s)/2. The second inequality is derived similarly.

THEOREM 4.3. (Archimedcan property). If r and s are positive
rational numbers, then there exists a positive integer n (properly, a
positive integral rational number n) such that nr > s.
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Proof. Let r = alb and s = c/d where a, b, c, and d are positive
integers. If n is a (rational number corresponding to a) positive
integer, then nr > s if nad > bc. If for n we choose 2bc, this inequality
is satisfied, since ad > 1.

We conclude our discussion of rational numbers with the introduction
of two functions pertaining to rational numbers. The first has Q as
domain and as its value at x, which we symbolize by [x], the greatest
integer equal to or less than x. For example,

[2] = 2 and [= 2.U
The second function has Q as domain. Its value at x, which we symbolize
by lxl and call the absolute value of x, is defined as

Ixl=l-x
x

< 0.

TI I E OR E M 4.4. If x and y are rational numbers, then

(I) 1XI > 0,

(Il) Ixyl = 1XI lyl,
(II1) Ix + yI <- 1XI + lyl,
(IV) lxi - 1,1 <_ lx - A.

EXERCISES
4.1. Prove Lemma 4.1.
4.2. Prove that the mapping a --)a. on Z into Q, introduced prior to Theo-

rent 4.1, is an order-isomorphism.
4.3. Prove Theorem 4.1. As for part (14) of this theorem, show that P is

simply the set of ratitmals which correspond to the positive integers.
4.4. Write a short paragraph to substantiate the assertion made after Theo-

rem 4.1 that the properties of multiplication listed may be inferred without
giving new proofs.

4.5. Prove that the relation <. for rational numbers may be characterized
as follows:

[a] <. [fl
iff abd2 <; b2cd.

4.6. Prove Theorem 4.4.

5. Cauchy Sequences of Rational Numbers

The set of rational numbers includes nonempty sets which have an
upper bound but fail to have a least upper bound. One of these is
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S= (xC(Qt"Ix2<3(,
as we proceed to prove. Clearly, any positive rational number whose
square is greater than 3 is an tipper bound. On the other hand, no posi-
tive rational number whose square is less than 3 (that is, no member
of S) is an upper bound, since, if s C S, then

3 - s2s+5-I-2s

is obviously greater than s and, as a direct calculation shows, is a
member of S. Since there exists no rational whose square is equal to 3,
it follows that those positive rationals whose square exceeds 3 exhaust
the set of upper bounds for S. Now this set has no least member. Indeed,
if u is a positive rational such that u2 > 3, then

u -I- 3/u
2

is positive, less than u (since 3/u < u'2/u = u), and its square is greater
than 3, since (u+3/2=(-L)2u-3u

2 2
,+

J
It follows that S has no least upper bound.

The failure of the rational number system to include the least upper
bound of every nonempty set having an upper bound may be taken as
the motivation for the extension of Q that is presented in the next
section. We now set the stage for this by developing the theory of
Cauchy sequences of rational numbers.

We recall that a sequence is a function having '_L° (or, when con-
venient, Z t) as its domain. The value of the sequence x at n will be
denoted by x,,. A sequence of rational numbers is a sequence x such
that x E 0, for every n. A Cauchy sequence of rational numbers is a
sequence x of rational numbers such that for every positive rational
number e there exists a positive integer N such that for every m, n > N

<e.
EXAMPLES

5.1. The sequence x such that
n + 1

X" _
u

is a Cauchy sequence (of rational numbers). To prove this we must exhibit for
each positive rational number a an integer N such that for m, n > N

lx - xml < e.
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Since

=
m_-n _ 1 - l `_1

Ixn - xm!
mn I n ml min

if we let N = [1/e] -I- 1, then for all m, n > N,

Ixn -x,n1 <_-1
min (rn, n)

< N

__
1/e

< e.
5.2. The sequence x such that

x0 = 0, x, = 1, and xn _ 2 (Xn -t -l- xn- 2)

a Cauchy sequence. To prove this we note first that

\1)nxn}1-xn= 2n

for

i CHAP. 3

n > 2

is

This can be established by induction. Further, from the recursive definition of
xn it is clear that for all m > n, x,, falls between xn and xni*.,. So, if a is a positive
rational number and we choose N so that 2N > l/e, then, for all m, n > N,

Ixm. - xnj Ixnu - xnI

< F.

We define the operations of addition and multiplication for se-
qucnccs of rational numbers in the following way:

x --1- y = u where u = x -1- y,,

xy = v where Un = Xnyn

Clearly, if x and y arc sequences of rational numbers, then sa arc
x + y and xy. It is an important fact that if x and y are Cauchy sequences
of rational numbers, then so are x + y and xy. In other words, addition
and multiplication are binary operations in the set of all Cauchy
sequences of rational numbers. The proof for the case of multiplication
requires the following preliminary result.
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LEMMA 5.1 . If x is a Cauchy sequence of rational numbers, then
there exists a positive rational number 5 such that for every n

Ixnl < S.

Proof. Corresponding to the positive rational number 1 there exists
by assumption an integer N such that for every m, n > N

(1) IXn - XmI <
Let
(2) S = max (Ixol, Ixil, ..., IxNI, IAN+II) + 1.

Clearly, if n < N + 1, then Ixni < 5. Suppose then that n > N + 1.
By virtue of (1), lxn - XN+11 < 1 and, hence,

Ixnl < I XN-, lI + I.

According to (2), IXN_yl + 1 < S. Hence, for all n, Ixtti < S.

LEMMA 5.2. If x and y are Cauchy sequences of rational numbers,
then x -{- y and xy arc Cauchy sequences of rational numbers.

Proof. (Sum.) Let e > 0. By hypothesis there exist N, and N2 such
that for all m, n > N,

IXn - xml < E/2,
and for all m,n> N2

lyn - yml < e/2.
Then for all m, n > max (N,, N2)

ixn + yn - (Xm + ym) I = I (Xn Xm) + (yn - ym)
<IXn-XmI +lyn - ymi
< E/2 + E/2
< E.

(Product.) Let e > 0. By virtue of the preceding lenuna, there
exist positive rational numbers S, and2 such that for all n

Ixnl < Si,SIynl
< S2.

Further, there exist integers NA and N2 such that for all m, n > N,

iXn - xmI < E/(262),
and for all m, n > N2

lyn - yml < E/(251).
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Then for all m, n > max (N,, N2)

Ixnyn - xym1 = Ixnyn - xmyn + x,,.yn -
Iy,.I Ix, - xml + Ix,,nl Iyn /ml

US-) 2. )
G E.

The basic properties of addition and multiplication may be sum-
marized by the statement that they satisfy properties (1) -(8) of Theo-
rem 3.1, where the distinguished elements in (3) and (7) are taken to
be the sequence 0, (whose value is 0 for all n) and the sequence 1
(whose value is 1 for all n), respectively. Again, the results stated in
Exercises 3.5- 3.7 hold. The negative of the Cauchy sequence x is the
sequence -x such that (-x) = -x,. for all n.

We introduce next a relation, which we symbolize by -,, in the set
of all Cauchy sequences of rational numbers. If x and y are Cauchy
sequences of rational numbers, then

x y

if for every positive rational number E there is an integer N such that
for every n > N,

Ixn - ynl < E.
_As an illustration, consider the sequences x and y such that x,,

(n + 2)/(n + 1) andy,. = 1 fot all n. These are Cauchy sequences and
clearly x -,.y, since x,, -y,, = 11(n + 1). It is an easy matter to estab-
lish the following property of this relation.

LEMMA 5.3. The relation N, is an equivalence relation on the set
of all Cauchy sequences of rational numbers.

If x is a Cauchy sequence of rational numbers, then x is called positive
ifl there is a positive rational number e and an integer N such that for
every n > N

X. > E.

The expected substitution properties of the equivalence relation with
respect to addition, multiplication, and positiveness are stated next.

LEMMA 5.4. If x, y, u, and v are Cauchy sequences of rational
numbers and x u and y -. v; then x + y u + v, xy -. uv and,
if x is positive, then u is positive.



3.5 I Gaucliy Sequences of Rational Numbers 147

Proof. The proof that x + y u + v is left as an exercise. Turning
to the result concerning multiplication, let e be a positive rational
number. By Lemma 5.1 there exist positive rational numbers 51
and 52 such that for every n

ly,.l < 5.,
lung < 52.

Since x ti, u, there exists an integer N, such that for every n > N1
Ixn - unl < E/25,,

and since y ' v, there exists an N2 such that for every n > N2

ly. - v,81 > E/252.
Then, for every n > max (N1, N2)

unV,, = IXnyn - unyn + unyn - unvnl

< lynl Ixn - u,, + 111"1 lyn -- and
< 52(e/252)
< E.

That if x is positive and x -, u, then u is positive is shown as
follows. By assumption, there exists a positive rational number 2E and
an integer N, such that for every n > N,

x > 2E,
and there exists an N2 such that for every n > N2

Ixn - E.

Hence, for n > max (N,, N2),
un> Xn - E

> 2E-e
> E.

LEMMA 5.5. The sum and the product of two positive Cauchy
sequences are positive Cauchy sequences. Further, if x is any Cauchy
sequence, then exactly one of the following hold: x is positive, x 'C 06,
-x is positive.
Proof. We shall prove only the last statement. Clearly, at most one
of the three possibilities for x can hold. So we need to prove that at
least one holds.

Suppose that x is not equivalent to 0,. By the definition of x N, 0,
this means that there is a positive rational number 2E such that for
every integer N there is an n > N such that

(1) I xn1 > 2E.
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Since x is a Cauchy sequence there is an integer N, such that if
m, n > N1, then
(2) Ixn - x+nl < E.

From our observation which led to (1), it follows that there exists an
integer p > N, such that
(3) I x,, l > 2E.

Since (3) implies that x 0 0, either x,, > 0 or x, < 0. Suppose that
x, > 0. Then

xp > 2E

by (3), and, as a consequence of (2), for every n > p
Ixn - x,, < E.

Hence, for every z1 > p
E

> 2E-E
> E.

Thus, if .x,, > 0, then x is positive.
By a similar argument it can be proved that if x,, < 0, then -x is

positive.

With the foregoing result available it is easy to prove the following
lemma, which is of basic importance when we turn our attention to the
-,-equivalence classes of Cauchy sequences (that is, real numbers).

LEMMA 5.6. If the Cauchy sequence x is not equivalent to 0,
then there is a Cauchy sequence z such that zx N, 1

Proof. The preceding lemma implies that for an x which is not
equivalent to 0. there is a positive rational a and an N such that for
every n > N

Ixnl > E.

Consider now the sequence x' such that xn = E if n < N and x;, = x
if n > N. Clearly, x' is a Cauchy sequence, x' x, and for all n

(1) Ixnl > E.

Since x' 0 for every it, the sequence z where z = l /x, is a sequence
of rational numbers. Further, z is a Cauchy sequence as we proceed
to prove. Let 17 be a positive rational number. Since x' is a Cauchy
sequence, there exists an N such'that for every m, n > N

(2) Ixn - xmI < 'qE2.
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Further, by virtue of (1), we have

I

From (2) and (3) it follows that for all m, n > N

Izm - zn! < 77,

which proves that z is a Cauchy sequence. It is clear that zx' 1

Finally, since x'' x, it follows that zx -, I.

EXERCISES
5.1. Prove that the sequence x such that

nxn=1-3+5-...--2n+1
is a Cauchy sequence.

5.2. Prove that the sequence x such that

xn=1+1 d-I-+...+I

is a Cauchy sequence.
5.3. Prove that addition and multiplication for Cauchhy sequences satisfy

parts (1)-(8) of Theorem 3.1.
5.4. Prove Lemma 5.3.
5.5. Complete the proof of Lemma 5.4.
5.6. Complete the proof of Lemma 5.5.

6. Real Numbers

As promised earlier, we define a real number as a -,equivalence
class of Cauchy sequences of rational numbers. The real number having
the Cauchy sequence x as a representative we write as

[x l r,

for the time being. The set of real numbers will be symbolized by R.
We shall call a real number positive if it contains a positive Cauchy

sequence. In view of Lemma 5.4, if [x]r is positive, then each of its
members is positive. The set of positive real numbers we symbolize
by R-1.

The following definitions of addition and multiplication for real num-
bers will scarcely offer any surprise:

[XI, -+- [[Ylr = [X +ylr,

[x]r - [y]r = [x! ]r.
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Of course, it is Lemma 5.4 which ensures that these are binary opera-
tions in R.

Next we call attention to a distinguished set of real numbers--those
which correspond to rational numbers in a natural way. If a is a rational
number, then (a, a, , a, - ) is a Cauchy sequence of rational num-
bers. Since T.. is a partition of the set of all such sequences, there exists
exactly one real number, let us call it ar, which contains (a, a, , a, - ).
This means that

j
{(a, ar)Ia C Q.]

is a function on into R. It is easily proved that this function is one-
to-one and, moreover, that the operations of addition and multiplication
are preserved by this mapping. Finally, a rational number is positive iff
its correspondent in B. is positive. Thus, B. includes an order-isomorphic
image of Q. Members of this image of Q, will be called rational real
numbers. The rational real number corresponding to the rational num-
ber 0, we again call zero and symbolize by Or. Thus,

Or = ](0=, 0e, .. ., 0 .. .)]r.

The rational real number corresponding to the rational number 1. we
again call one and symbolize by J r. Thus,

The first major theorem concerning the real number system
(g, -1-, , Or, 1 r, B.1) is the following. Its proof relies entirely on those
properties of the rational number system appearing in Theorem 4.1, the
properties of Cauchy sequences appearing in Lemmas 5.5 and 5.6, and
the definitions of addition, multiplication, and positiveness for real
numbers.

THEOREM 6.1. The operations of addition and multiplication for
real numbers, together with Or, 1, and the set of positive reals, have
properties (1)-(13) listed in Theorem 4.1.

Those further properties of addition and multiplication for rational
numbers which are listed immediately after Theorem 4.1 are enjoyed by
the corresponding operations for real numbers. If less than, which we
symbolize by <r, is defined in $ by

x <r y if y- x E 8+,
then it has all those properties which <, possesses Also, the definition
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:)f the absolute value function extends to the real numbers and Theorem
4.4 applies.

Our results up to this point may be summarized by the statement that
the extension of Q to R has resulted in no loss of ground. That a gain
has been made will be demonstrated when we have proved that every
nonempty set of real numbers which has an upper bound has a least
upper bound. The proof of this property of the real number system
requires some other results which are important in their own rights. The
first of these is usually phrased as the statement that the rational num-
bers are dense in the set of real numbers.

THEOREM 6.2.t Between any two distinct real numbers there is
a rational real number. Precisely, if x and y are distinct real numbers,
then there exists a rational real number z such that if x < y, then
x < z < y while if y < x, then y < z < x.
Proof. We shall consider the case x < y. Let a C x and b C Y. Then
x < y implies the existence of a positive rational 4c and an integer NJ
such that for every n > N,

(1) fi - a > 4E.
Further, since a and b are Cauchy sequences, there exist integers N2
and N3 such that for every rn, n > N2
(2)

and for every m, n > N3

Ian - a,,,I < E,

(3) Ibn - b,,11 < e.

Let N = max (N1, N2, N3) + I and let s be a rational number such
that e < s < 2e (see Theorem 4.2). Now consider the real number z
corresponding to the rational number aN + s. We contend that x < z
and z < y. From (2) we may conclude that for every n > N

an - aN < E.
Hence, aN -- an > -e and, therefore, for every n > N

(aN+S) -an > s e> 0.
This means that the Cauchy sequence

(aN ± S, aN +s, ..., a, - S, ...> - a
is positive. Since this sequence is a member of z - x, the real number
z - x is positive, and hence x < z.
t In the remainder of this chapter we shall omit the letter "r" as a subscript for the symbols

used in connection with real numbers.
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Using the identity

bm - (aN + s) = (bv - aN) + (bm - bN) - s,
it follows by a similar argument [which employs (1) and (3) ] that
y - z is positive, and hence z < y.

The following theorem is a generalization of the corresponding
property (Theorem 4.3) for the system of rational numbers.

THEOREM 6.3 (Archiincdean property). If x and y are positive
real numbers, then there exists a positive integer n (properly, a real
number n which corresponds to a rational which, in turn, corre-
sponds to a positive integer) such that nx > y.

Proof. Let b C y. According to Lemma 5.1, there exists a positive
rational number b such that for every n

bn < b.

If d is the real number corresponding to (b, b, , a, ), then
y < d.

Also, by assumption,
0 <x.

By the preceding theorem there exist rational real numbers s and t
such that

0<s<x,
y <t <d.

By the Archimedean property of rationals (which obviously carries
over to rational reals) there exists a positive integer n such that

ns> t.
It follows that

nx>ns>t>y.

THEOREM 6.4. A nonempty set of real numbers which has an
upper bound has a least upper bound.

Proof. In the proof which follows, if x is a real number and a is a
rational number such that x < a, we shall abbreviate this to simply
"x < a."

Let A be a set which satisfies the hypothesis of the theorem. Ac-
cording to Theorem 6.3 there exist integers m and M such that m is
not an upper bound of A and M is an upper bound of A. (To obtain
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an in, select an element a of A, apply Theorem 6.3 to secure an
integer n such that n > -a, and then let m = -n.) Then we may
infer the existence of an integer bo such that bo is an upper bound of A
while bo - I is not. We now define b inductively as follows:

bn _ bn_t - 2_n if bn_.1 - 2-n is an upper bound of A,
hn_ t if bn_t - 2-4 is not an upper bound of A.

For all n, bn is an upper bound of A and, as may be proved by an
induction argument, bn - 2-n is not an upper bound. Hence, for
every m > n
(1) bn - 2-" < b,n.
Further, it is clear that for every m > n,
(2) b,n < b .

Combining (1) and (2) gives

Ibn -- bml < 2-n.

It follows that if N is a positive integer and m, n > N, then

Ibn - bml < 2-N,

whence b is a Cauchy sequence of rational numbers. Let u be the real
number which it determines. Then by virtue of (1) arid, in turn, (2),
for every n
(3) bn-2-n <u,
(4) u < bn. f

We shall now prove that u is an upper bound of A. Assume to the
contrary that a > u for some a in A. Then there exists an n such
that 2" > (a - u)--l or

2-n<a-u
Addition of this to (3) yields the inequality bn < a, a contradiction
of the fact that bn is an upper bound of A.

Finally we prove that u is the least upper bound of A. Assume to
the contrary that v is a smaller upper bound. As above, there then
exists an n such that
(5) 2-n<u-v.
f "That (2) implies (4) is a consequence of the following result. If x and y are Cauchy se-

quences and there exists an integer N such that for all n > N, x < y,,, then lx], < ,[y],. For
the contrary implies that the Cauchy sequence z such that z = x - y" is positive and hence
there exists an e > 0 and an N, such that for all n > N,, x - y > e. If we choose n =
N + N, we are led to a contradiction of the hypotheses. We note further that x < y" does
not imply [xJ, < ,[y], but only [x], <, [Y],.
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Since b" - 2-" is not an upper bound of A, there exists an a in A such
that b - 2-" < a, which implies that

b"-2"<v.
Addition of this to (5) yields the inequality

b" < u,
which contradicts (4).

Later we shall prove that the properties of the real number system
stated in 't'heorems 6.1 and 6.4 characterize it to within an order-
isomorphism.

EXERCISES
6.1. Prove that the system of rational real numbers is order-isomorphic to
6.2. Prove Theorem 6.1.
6.3. Prove the assertion made in the proof of Theorem 6.4 that b" - 2-" is

not an upper bound of A.
6.4. Derive as a corollary to 't'heorem 6.4 that a nonempty set of real num-

bers which has a lower bound has a greatest lower bound.
6.5. Let f be a real function --that is, a function whose domain and range

are each a set of real numbers. Such a function is called continuous at a member
a of its domain iff for every e > 0 there exists a S > 0 such that for IhI < S and
a -l- h in the domain off

I f(a + h) - f(a) I < E.

Prove that if f is a continuous at each point of the closed interval [a, b] and
f (a) < 0 and J(b) > 0, then there exists a c such that a < c < b and f (c) = 0.
Hint: Define c to be the least upper bound of all x between a and b for which
f(x) < 0.

6.6. Assume that it has been shown that a real polynomial function is con-
tinuous. Let f be the polynomial function such that for all real numbers x,
f(x) = x" - a where n is a positive integer and a is a positive real number.
Prove that there exists exactly one positive real number c such that f (c) = 0.
This number is called the nth root of a and symbolized by Va or a'1"

6.7. If a > 0, b > 0, and ri is a positive integer, prove that

1/a 17'b = ab.

7. Further Properties of the Real Number System

A sequence x of real numbers is a sequence such that x" C R for
every n. A Cauchy sequence of real numbers is a sequence x of real
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numbers such that for every positive real number e there exists a positive
integer N such that for every m, n > N

IX'n - xml < E.

We define next the notion of limit. This notion is the cornerstone of
the calculus and, indeed, of analysis in general. The real number y is a
limit of the sequence x of real numbers iff for every positive real num-
ber e there exists a positive integer N such that for every n > N

Ixn - yl < E.
The proof of the following lemma is left as an exercise.

LEMMA 7.1. A sequence of real numbers has at most one limit.

Thus, if the sequence x of real numbers has y as a limit, then y is
its only limit, and we are justified in introducing the following familiar
notation for y :

lim x,, = y or simply lim x = Y.n-
LEMMA 7.2. Let a be a sequence of rational numbers and let x be

the sequence of real numbers such that for every n, x = the
real number corresponding to a,,. Then x is a Cauchy sequence ifr a
is a Cauchy sequence. Further, if a is a Cauchy sequence and y is
the real number which it defines, then lim x,, = y.

Proof. We shall consider only the second assertion. Let e be a
positive real number and let b = (d)r he a rational real number such
that 0 < b < E. Since a is assumed to be a Cauchy sequence, there
exists an N such that for all m, n > N

Ian - a,I < d

Since a - a,,, < d it follows that

Ran, a,,, .. an, ...) - (a,, a2, ... , an, . ..) ]r < b

(see the footnote in the proof of Theorem 6.4) or, in other words, that

xn - y<S.
Similarly, the inequality a. - an < d implies that

Hence, for all m, n > N
Ixn - yl < b <
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THEOREM 7.1. (Cauchy convergence principle). A sequence of
real numbers has a limit iff it is a Cauchy sequence.

Proof. It is left as an exercise to prove that if a sequence of real
numbers has a limit, then it is a Cauchy sequence.

Turning to the converse, assume that u is a Cauchy sequence of
real numbers. The strategy for proving that u has a limit calls for the
determination of a sequence a of rational numbers which approximates
u sufficiently closely that a is a Cauchy sequence and the real number
which it defines is the limit of rc.

For each positive integer n, u,, < un + 1/n, and hence (Theorem
6.2) there exists a rational real number x such that

un < x < un -i- 1 /n.
Let a be a positive real number. Then there exists an integer Nn such
that N, > 3/e and, hence, for every n > Nr

(1) tun - xnl < e/3.

Further, x is a Cauchy sequence, since

lxn - Xnel < Ixn - unl + Jun - Umt + June - Xrnl,
and for in and n sufficiently large each summand on the right side of
the inequality is less than e/3.

Let an be the rational number to which xn corresponds. By Lemma
7.2, a is a Cauchy sequence of rational numbers and hence defines a
real number y. Further, by Lemma 7.2,

urn Xn = Y.

Hence, there exists an integer N2 such that for n > N2

(2) Ixn - YI < e/2.
We infer from (/) and (2) that for n > Inax (Nn, N2)

tun - yI ` Iun - xnl + Ix,, - yj < e/3 + e/2 < e,
which establishes that y = Limn un.

We establish next the possibility of representing a real number by a
nonterminating decimal. A precise formulation of this, generalized to
any integer radix greater than or equal to 2, is given in the following

theorem.

THEOREM 7.2. Let r be an integer greater than or equal to 2e
Corresponding to each nonncgative real number x there is a sequellOG



3.7 I Further Properties of the Real Number System 157

(a, dl, d2, - - , d,,, - - -) of integers which is uniquely determined by x
(relative to r) such that

(i) a = [x], the largest integer less than or equal to x,
(ii) 0 < do < r for all n,

(iii) the sequence whose terms are defined inductively by

yo=a,
yn+-I = yn + doI l/rnf-1

is a Cauchy sequence and lien yn = x.

Proof. Let r be an integer greater than or equal to 2, x be a non-
negative real number, and a = [x]. Then

xr = ar + xl
for some number xl such that 0 < xl < r. Let dl = lxi ] so

xlr = dlr + x2

for some number x2 such that 0 < X2 < r. Let d2 = [x2] so

x2r = d2r A- xa

for some number x3 such that 0 < xa < r.

In general, define xn by

xn_Ir = do-lr + xn
and set do = [xn]. 't'hen

l d2 d

r
o Y I>>x=a

r
--z+..+.--

r
-n

ra n.i

where 0 < x,,.1I < r. Hence

r r r// 1.11

According to the definition of yn given in (iii), this may be written as

0 <x - yn < r n.

It follows that ix - ynI < r '`, whence limy. = x.
The proof of the uniqueness (relative to r) of the sequence corre-

sponding to x is left as an exercise.

If r = 10 in the' preceding theorem we obtain the familiar repre-
sentation of a nonncgative real cumber as a nontcrminating decimal
;upon writing a = [xj in decimal notation. Of the two possible decimal
'representations of numbers of the form i 10-) where i and j are non-
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negative integers, the theorem chooses that one which consists of all
zeros after a certain point.

The proof of the converse of Theorem 7.2 is left as an exercise.

THEOREM 7.3. Let (a, dl, d2, , d,,, ) be a sequence of non-
negative integers such that for some integer r > 2, 0 < do < r for
all n. Then there exists a unique nonnegative real number x such that
the sequence whose terms y. are defined inductively by yo = a and
yA+, = y + is a Cauchy sequence having x as its limit.

We conclude our development of the real number system by calling
attention to # common feature of the three extensions whereby R is ob-
tained from N. If the details (see Sections 2 and 3) of the first extension
are reviewed, it will become evident that it could be mimicked using
integers instead of natural numbers as the initial elements. Suppose this
construction is carried out to obtain what might be called the system of
superintegers. Then this system has all those properties which the sys-
tem of integers possesses. Moreover, the system of superintegers has an
additional property-one which destroys any further interest in it.
Namely, as the reader can readily prove, it is order-isomorphic to the
system of integers. In other words, the extension of Z by the method
used to extend N to Z yields nothing essentially different from Z. A
corresponding result holds for the second type of extension we intro-
duced : the extension of (Q by the method used to extend Z to Q is a
system which is order-isomorphic to Q. Finally, let us consider the ex-
tension of R, which can be made in terms of Cauchy sequences. We
shall call the numbers we get in this way superreal numbers. Thus, a
superreal number is an equivalence class of Cauchy sequences of real
numbers. Corresponding to the results stated above, it is possible to
prove that the system of superreal numbers is order-isomorphic to the
system of real numbers. In other words, essentially nothing new results
if R is extended by the method used to extend Q to R. To prove this
we point out first that, as discussed in Section 6, there is a one-to-one
map on the initial system (which is now R) into the extended system SR.
This map determines an order-isomorphic image of B. in SR. Suppose
now that X is any superreal number. Let x E X, which means that x is
a Cauchy sequence of real numbers. According to Theorem 7.1, x has a
limit y, whence x is -.,equivalent to (y, y, , y, ), which implies
that X = yer. This means that the image of B. in SR exhausts SR or, in
other words, that SR is an order-isomorphic image of R.
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EXERCISES
7.1. Prove Lemma 7.1.
7.2. Prove the first assertion made in Lemma 7.2.
7.3. Prove that if a sequence of real numbers has a limit, then it is a Cauchy

sequence.
7.4. In the proof of Theorem 7.2, show that an explicit definition of d" is

d" = [xr"] - r[xr"-'].
7.5. Prove Theorem 7.3.
7.6. Prove that the system of superintegers is order-isomorphic to the system

of integers.

BIBLIOGRAPHICAL NOTES

The two basic set-theoretical methods of constructing the system of real num-
bers from the system of natural numbers are due to Cantor and Dedekind. The
difference in these methods appears in the extension of the rational numbers
to the real numbers. The extension of the rationals to the reals via Dedekind's
method is given in Landau (1930) and in N. FI. McCoy (1960).



CHAPTER 4 Logic

AS WE SHALL study it, mathematical or symbolic logic has two
aspects. On one hand it is logic--it is an analytical theory of the art
of reasoning whose goal is to systematize and codify principles of valid
reasoning. It has emerged from a study of the use of language in argu-
ment and persuasion and is based on the identification and examination
of those parts of language which are essential for these purposes. It is
formal in the sense that it lacks reference to meaning. Thereby it
achieves versatility: it may be used to judge the correctness of a chain
of reasoning (in particular, a "mathematical proof") solely on the basis
of the form (and not the content) of the sequence of statements which
make up the chain. There is a variety of symbolic logics. We shall be
concerned solely with that one which encompasses most of the deduc-
tions of the sort encountered in mathematics. Within the context of
logic itself, this is "classical" symbolic logic.

The other aspect of symbolic logic is interlaced with problems relat-
ing to the foundations of mathematics. In brief, it amounts to formu-
lating a mathematical theory as a logical system augmented by further
axioms. The idea of regarding a mathematical theory as an "applied"
system of logic originated with the German mathematician G. Frege
(1848-1925), who developed a system of logic for use in his study of
the foundations of arithmetic. The Principia Mathematica (1910-1913) of
Whitehead and Russell carried on this work of Frege and demonstrated
that mathematics could be "reduced to logic." In the later chapter
treating axiomatic theories some indication will be given of this approach
to mathematical theories.

1. The Statement Calculus. Sentential Connectives

In mathematical discourse and elsewhere one constantly encounters
declarative sentences which have been formed by modifying a sentence
with the word not or by connecting sentences with the words and, or, if
. . . then (or implies), and if and only if. These five words or combina-
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tions of words are called sentential connectives. Our first concern
here is the analysis of the structure of a composite sentence (that is,
a declarative sentence in which one or more connectives appear) in
terms of its constituent prime sentences (that is, sentences which
either contain no connectives or, by choice, are regarded as "indi-
visible"). We shall look first at the connectives individually.

A sentence which is modified by the word "not" is called the nega-
tion of the original sentence. For example, "2 is not a prime" is the
negation of "2 is a prime," and "It is not the case that 2 is a prime and
6 is a composite number" is the negation of "2 is a prime and 6 is a
composite number." It is because the latter sentence is composite that
grammatical usage forces one to use the phrase "It is not the case that"
instead of simply the word "not."

The word "and" is used to join two sentences to form a composite
sentence which is called the conjunction of the two sentences. For ex-
ample, the sentence "The sun is shining, and it is cold outside" is the
conjunction of the sentences "The sun is shining" and "It is cold out-
side." In ordinary language various words, such as "but," are used as
approximate synonyms for "and"; however, we shall ignore possible
differences in shades of meaning which might accompany the use of
one in place of the other.

A sentence formed by connecting two sentences with the word "or"
is called the disjunction of the two sentences. We shall always assume
that "or" is used in the inclusive sense (in legal documents this is often
expressed by the barbarism "and/or"). Recall that we interpreted
"or" in this way in the definition of the union of two sets.

From two sentences we may construct one of the form "If . . . ,

then . . ."; this is called a conditional sentence. The semtcnce irn-
ipediately following "If" is the antecedent, and the sentence iuianedi-
ately following "then" is the consequent. For example, "If 2 > 3,
then 3 > 4" is a conditional sentence with "2 > 3" as antecedent
and "3 > 4" as consequent. Several other idioms in English which we
shall regard as having the same meaning as "If P, then Q" (where I'
and Q arc sentences) are

P implies Q,
only if Q,

P is a sufficient condition for Q,
Q, provided that P,
Q if P,
Q is a necessary condition for P.
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The words "if and only if" are used to obtain from two sentences a
biconditional sentence. We regard the biconditional

P if and only if Q

as having the same meaning as

if P, then Q, and if Q, then P;
Q is a necessary and sufficient condition for P.

By introducing letters "P," . . . to stand for prime sentences, a
special symbol for each connective, and parentheses, as may be needed
for punctuation, the connective structure of a composite sentence can
be displayed in an effective manner. Our choice of symbols for the
connectives is as follows:

-, for "not,"
A for "and,"
V for "or,"
- for "if . . . , then . . . ,"

for "if and only if."

Thus, if P and Q are sentences, then
-1P,PAQ,PVQ,P-4Q,P++ Q

are, respectively, the negation of P, the conjunction of P and Q, and
so on. Following are some concrete examples of analyzing the connec-
tive structure of composite sentences in terms of constituent prime
sentences.

EXAMPLES
1.1. The sentence

2 is a prime, and 6 is a composite number

may be symbolized by
P A C,

where P is "2 is a prime" and C is "6 is a composite number."
1.2. The sentence

If either the Pirates or the Cubs lose and the Giants win, then the
Dodgers will be out of first place and, moreover, I will lose a bet

is a conditional, so it may be symbolized in the form

R --> S.

The antecedent is composed from the three prime sentences P ("The Pirates
lose"), C ("The Cubs lose"), and G ("The Giants win"), and the consequent
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is the conjunction of D ("The Dodgers will be out of first place") and B ("I
will lose a bet"). The original sentence may be symbolized in terms of these
prime sentences by

((PVC.,) AG)-'(DAB).
1.3. The sentence

If either labor or management is stubborn, then the strike will be
settled iff the government obtains an injunction, but troops are
not sent into the mills

is a conditional. The antecedent is the disjunction of L ("Labor is stubborn")
and M ("Management is stubborn"). The consequent is a biconditional whose
left-hand member is S ("The strike will be settled") and whose right-hand mem-
ber is the conjunction of G ("The government obtains an injunction") and the
negation of R ("Troops are sent into the mills"). So the original sentence may
be symbolized by

(L V M) -> (S c-), (G A (-1R))).

To avoid an excess of parentheses in writing composite sentences in
symbolic form, we introduce conventions as in algebra. We agree that
+-> is the strongest connective (that is, it is to encompass most), and then
follows -+. Next in order are V and A, which are assigned equal
strength, and then follows -, , the weakest connective. For example,

P A Q-+Rmeans(P A Q)-iR,
P +--> Q --+R means P F-' (Q - ' R),

-, P A Q means (-n P) A Q,

and the sentence in Example 1.3 may now be symbolized as

L v M -> (S +-> G A -, R).

EXERCISES
1.1. Translate the following composite sentences into symbolic notation,

using letters to stand for the prime components (which here we understand to
mean sentences which contain no connectives).

(a) Either it is raining or someone left the shower on.
(b) If it is foggy tonight, then either John must stay home or he must take

a taxi.
(c) John will sit, and lie or George will wait.
(d) John will sit and wait, or George will wait.
(e) I will go either by bus or by taxi.
(f) Neither the North nor the South won the Civil War.
(g) If, and only if, irrigation ditches are dug will the crops survive; should

the crops not survive, then the farmers will go bankrupt and leave.
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(h) If I am either tired or hungry, then I cannot study.
(i) if John gets up and goes to school, he will he happy; and if he does not

get up, he will not be happy.

1.2. Let C be "Today is clear," R be "It is raining today," S be "It is snowing
today," and Y be "Yesterday was cloudy." Translate into acceptable English
the following.

(a) C->-,(RAS). (d) (Y->R) V C.
(b) Y .-4 C. (e) C 4 .* (R A -18) V Y.
(c) Y A (C V R). (f) (C H R) A (--,S V Y).

2. The Statement Calculus. Truth Tables

Earlier we agreed that by a statement we would understand a
declarative sentence which has the quality that it can be classified as
either true or false, but not both. That one of "truth" or "falsity"
which is assigned to a statement is its truth value. Often we shall
abbreviate "truth" to T and "falsity" to F. If P and Q are statements,
then, using the everyday meaning of the connectives, each of

-,P,PAQ,PV Q,P--3Q,PHQ
is a statement. Let us elaborate.

On the basis of the usual meaning of "not," if a statement is true,
its negation is false, and vice versa. For example, if S is the true state-
inent (has truth value T) "The moon is a satellite of the earth," then
--S is false (has truth value F).

By convention, the conjunction of two statements is true when, and
only when, both of its constituent statements are true. For example,
"3 is a prime, and 2 + 2 = 5" is false because "2 + 2 = 5" is a false
statement.

Having agreed that the connective "or" would be understood in the
inclusive sense, standard usage classifies a disjunction as false wlicn,
and only when, both constituent statements are false.

Truth-value assignments of the sort which we are making can he
summarized concisely by truth tables wherein are displayed the truth-
value assignments for all possible assignments of truth values to the
constituent statements. Below are truth tables for the types of composite
statements we have already discussed, as well as those for conditional
and biconditional statements.
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Negation Conjunction Disjunction
P _1 P P Q I P A Q P Q I P V Q

T F T T T T T TI

F T T F F T F T
F T F F T T
F F F F F F

Condi tional Bicond itio na l

P P Q I PHQ
T T
T F

F T

F F

T

F

T
T

T T

T F

F T

F F

T

F

F

T

The motivation for the truth-value assignments made for the con-
ditional is the fact that, as intuitively understood, P -- * Q is true if Q
is deducible from P in sortie way. So, if P is true and Q is false, we want
1' - Q to be false, which accounts for the second line of the table.
Next, suppose that Q is true. Then, independently of P and its truth
value, it is plausible to assert that P-' Q is true. This reasoning sug-
gests the assignments made in the first and third lines of the table. To
justify the fourth line, consider the statement P A Q - -) P. We expect
this to be true regardless of the choice of I' and Q. But, if P and Q are
both false, then P A Q is false, and we are led to the conclusion that
if both antecedent and consequent are false, a conditional is true.

The table for the biconditional is determined by that for conjunction
and the conditional, once it is agreed that P <- Q means the same as
(P -+ Q) A (Q ---' P).

These five tables are to be understood as definitions; they arc the
customary definitions adopted for mathematics. We have made merely
a feeble attempt to make them seem plausible on the basis of meaning.
It is an immediate consequence of these definitions that if P and Q are
statements, then so are each of -, P, P A Q, I' V Q, P ---' Q, and P E--' Q.
It follows immediately that any composite sentence whose prime coln-
ponents are statements is itself a statement. If the truth values of the
prime components are known, then the truth value of the composite
statement can be determined in a mechanical way.
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EXAMPLES
2.1. Suppose that a composite statement is symbolized by

PVQ-+(RH-1S)
and that the truth values of P, Q, R, and S are T, F, F, and T, respectively. Then
the value of P V Q is T, that of -1S is F, that of R H -1S is T, and, hence, that
of the original statement is T, as a conditional having a true antecedent and a
true consequent. Such a calculation can be made quickly by writing the truth
value of each prime statement underneath it and the truth value of each com-
posite constructed under the connective involved. Thus, for the above we would
write out the following, where, for study purposes, we have put successive steps
on successive lines.

P V Q -i (R E3 -,S)
T F F T

T F

T

T

2.2. Consider the following argument.

If prices are high, then wages are high. Prices are high or there
are price controls. Further, if there are price controls, then there
is not an inflation. There is an inflation. Therefore, wages are
high.

Suppose that we are in agreement with each of the first four statements (the
premises). Must we accept the fifth statement (the conclusion)? To answer this,
let us first symbolize the argument using letters "P," "W," "C," and "I" in the
obvious way. Thus, P is the sentence "Prices are high." Then we may present
it as follows:

P -, W
PVC
C -' -i I
I
W

To assume that we are in agreement with the premises amounts to the assign-
ment of the value T to the statements above the line. The question posed then
can be phrased as: If the premises have value T, does the conclusion have value
T? The answer is in the affirmative. Indeed, since I and C -b -,I have value T,
the value of C is F according to the truth table for the conditional. Hence, P has
value T (since P V C is T) and, therefore, W has value T (since P -- W is T).

2.3. We consider the conjunction
(PVC)A(C-'-,I)

of two of the statements appearing in the preceding example. In general, the
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truth value which such a statement will receive is dependent on the assignments
made to the prime statements involved. It is realistic to assume that, during
periods of changing economic conditions, the appropriate truth value assign-
ments to one or more of P, C, and I will change from T to F or vice versa. Thus
the question may arise as to combinations of truth values of P, C, and I for which
(P V C) A (C -' -,l) has value T or value F. This can be answered by the
examination of a truth table in which there appears the truth value of the com-
posite statement for every possible assignment (211) of truth values to P, C, and I.
This is called the truth table for the given statement, and it appears below.
Each line includes an assignment of values to P, C, and I, along with the asso-
ciated value of (P V C) A (C--+ -,l). The latter may be computed as in the
first example above. However, short cuts in filling out the complete table will
certainly occur to the reader as he proceeds.

P C I (PVC) A (C -- -1I)

T T T F

T T F T
T F T T
T F F T
F T T F

F T F T
F F T F

F F F F

2.4. If P is "2 is a prime" and L is "Logic is fun," there is nothing to prohibit
our forming such composite statements as

PV L,P->L, -,P --*PV L.
Since both P and L have truth values (clearly, both are T), these composite
statements have truth values which we can specify. One's initial reaction to
such nonsense might be that it should be prohibited- -that the formation of
conjunctions, conditionals, and so on, should be permitted only if the com-
ponent statements are related in content or subject. However, it requires no
lengthy reflection to realize the difficulties involved in characterizing such
obscure notions. It is much simpler to take the easy way out: to permit the
formation of composite statements from any statements. On the basis of mean-
ing, this amounts to nonsense sometimes, but no harm results. Our concern is
with the formulation of principles of valid reasoning. In applications to sys-
tematic reasoning, composite statements which amount to gibberish simply
will not occur.

EXERCISES

2.1. Suppose that the statements P, Q, R, and S are assigned the truth values
T, F, F, and T, respectively. Find the truth value of each of the following state-
ments.
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(a) (P V Q) V R. (f) P V R 4- R A --,S.
(b) P V (Q V R). (g) S*--+P--(-,PV S).
(c) R -+ (S A P). (h) Q A -,S -> (P S).
(d) P -> (R --> S). (i) RAS--1(P--), -,Q VS).
(c) P -> (R V S). (j) (P V -,Q) V R -+ (S A -,S).
2.2. Construct the truth table for each of the following statements.

(a) P-->(P-'Q). (d) (P-'Q)<-- -1PV Q.
(b) P V Q,(-+ Q V P. (e) (P -4 Q A R) V (-,P A Q).
(c) P --> -, (Q A R). (f) P A Q - (Q A -, Q --> R A Q).
2.3. Suppose the value of P -> Q is T; what can be said about the value of

-iPAQHPVQ?
2.4. (a) Suppose the value of P 4-, Q is T; what can be said about the

values of P- -1 Q and --, 1' <- Q?
(b) Suppose the value of P <-* Q is F; what can be said about the

values of P <- --IQ and -1 P 4-4 Q?
2.5. For each of the following determine whether the information given is

sufficient to decide the truth value of the statement. If the information is enough,
state the truth value. If it is insufficient, show that both truth values are possible.

(a) (P - Q) - R. (d) -1 (P V Q) -. -1P A -, Q.
T T

(b) P A (Q ' R). (e) (P - Q) ---> (-,Q --* -,P).
T T

(c) P V (Q --> R). (f) (P A Q) -> (P V S).
T T F

2.6. In Example 1.3 we symbolized the statement

If either labor or management is stubborn, then the strike will be
settled if the government obtains an injunction, but troops are
not sent into the mills

as

L V Al - ( S -,R).

By a truth-value analysis, determine whether this statement is true or false
under each of the following assumptions.

(a) Labor is stubborn, management is not, the strike will be settled, the
government obtains an injunction, and troops are sent into the mills.

(b) Both labor and management are stubborn, the strike will not be settled,
the government fails to obtain an injunction, and troops are sent into
the mills.

2.7. Referring to the statement in the preceding exercise, suppose it is agreed
that



4.3 I T /w Statement Calculus. Validity

If the government obtains an injunction, then troops will be sent
into the mills. If troops are sent into the mills, then the strike will
not be settled. The strike will be settled. Management is stubborn.

Determine whether the statement in question is true or not.

169

3. The Statement Calculus. Validity

The foregoing is intended to suggest the nature of the statement
calculus, namely, the analysis of those logical relations among sentences
which depend solely on their composition from constituent sentences
using sentential connectives. The setting for such an analysis includes
the presence of an initial set of sentences (the "prime sentences") and
the following two assumptions.

(i) Each prime sentence is a statement; that is, there may be assigned
to a prime sentence a truth value.

(ii) Each sentence under consideration is composed from prime
sentences using sentential connectives and, for a given assignment
of truth values to these prime sentences, receives a truth value in
accordance with the truth tables given earlier for negation, con-
junction, and so on.

With this in mind, let us make a fresh start on the statement calculus.
Suppose there is given a noncmpty set of distinct sentences and that
we extend this set by adjoining precisely all of those sentences which
can be formed by using, repeatedly and in all possible ways, the various
sentential connectives. Then the extended set has the following prop-
erty. If A and B are members, then so are each of -i A, A V B, A A B,
A --* B, and A-+ B. We shall call the members of the extended class
formulas. The members of the initial set are the prime formulas, and
the others are composite formulas. The prime formulas which appear
in a composite formula are said to be contained in that formula and
are called its prime components. To display a composite formula un-
ambiguously, parentheses are used. However, to avoid excessive use of
parentheses, the conventions introduced earlier will be employed.

The classical statement calculus, which is the only one we treat,
assumes that with each prime formula there is associated exactly one
member of IT, Fl. Further, it assumes that it is irrelevant if it is T or F
that is associated with a prime formula. Thereby, maximum versatility
in the applications is achieved-truth values may be assigned as the
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occasion demands. The truth value of a composite formula is defined
inductively in accordance with the following tables.

A B AAB AvB A--*B A*-3B A -,A

T T T T T T T F

T F F T F F F T

F T F T T F

F F F F T T

EXAMPLES
3.1. If the prime components in a formula A are P1, P2, , P,,, then the

definition of the truth value of A in terms of truth values of P1, P2, , P" can
be exhibited in a truth table, as described earlier. There are 2" rows in such a
table, each row exhibiting one possible assignment of T's and F's to P,, P2, . , P".

3.2. Let A be a formula having P,, Ps, , P as its prime components. Then
A provides a rule for associating with any ordered n-tuple of T's and F's, whose
ith coordinate is the assignment to Pi, for i = 1, 2, , n, one of T and F. If we
set V = IT, F}, then we can rephrase our observation: A defines a function on
V" into V. A function on V" into V we shall call a truth function (of n argu-
ments). Truth functions will be designated by such symbols as

,/ (P1) P2, .., P.), g(ql, q2, ..., q"), and so on.
Note that we depart from our practice of designating functions by single letters
and use notation heretofore reserved for function values. Our excuse is that
composition of functions can be described more simply. For example, the
notation

1(pl,
..., pi-1, g(gl) . . .' qm), pi-hl, ..., pn)

is self-explanatory as a function obtained by composition from the truth func-
tion f of n arguments and g of nl arguments. We shall refer to this function as
that obtained by substitution of g for the ith variable in f. Clearly, such com-
binations of truth functions are again truth functions.

An alternative approach to the statement calculus can be given in terms of
truth functions: There are 22 different truth functions of n arguments. Of the
four for n = 1, that whose value at T is F, and whose value at F is T, we shall
denote by -Ip. Among the sixteen truth functions of two arguments appear the
four listed below in tabular form. The reason for the denotations chosen should
be clear.

A (p, q) v (p, q) -->(p, q) H(p, q)

(T, T) T T T T
(T, F) F T F F
(F, T) F T T F

(F, F) F F T T
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Since the outfix notation for these functions seems unnatural, we shall put the
reader at ease by employing the more familiar infix notation [for example,
p A q instead of A(p, q)].

It is of interest that by using just those functions which have been mentioned
so far and the operation of function composition in the form mentioned above,
all truth functions of any number of arguments can be obtained. Indeed, the
three functions -,p, p V q, and p A q suffice. To prove this, let f(p,, p2, ,
be some truth function. If the value off is F for all values of p (that
is, f is the constant function F), then it is equal to

(p, A A (P2 A -,p2) A .. A (pn A-,p,.).
Otherwise, f assumes the value T at least once. For each element of the domain
off such that f takes the value T, let its form the function

q, A q2A ... Aq,,,
where qi is p (or -,p,) when p; has the value T (or F). Then we contend that f
is equal to the function obtained "by disjunction" from all such functions. For
example, iff(p, q) takes the value F when p = q = T and the value T otherwise,
then

f(1p,q)=(pA-1 q) V (-iPAq)V (-,pA-,q).
The reader can verify this and supply a proof of the general statement.

Actually, each of the pairs -,p, p A q and -,p, p V q is adequate to generate
all truth functions, using the operation of function composition, since p V q =
-, (-,p A q) and p A q = -1 (-,p V -, q). The same is true of the pair -,p,
p --- q, as the reader can verify. Although no member of any of the three pairs
mentioned can be discarded to obtain a single function which generates all truth
functions, such functions do exist. For example, the function plq (as it is cus-
tomarily written) of two arguments, whose value is T except at (T, T), where its
value is F, suffices. To prove this it is sufficient to show (for example) that both
-,p and p V q can be expressed in terms of it.

As we have already observed, each formula of the statement calculus defines
a truth function. It should be clear that it is only the structure of a composite
formula A regarded as a truth function that one considers when making a truth
value assignment to A for a given assignment of truth values to its prime com-
ponents. When it is convenient, we shall feel free to regard a formula as a truth
function. In such an event, the prime components (statement letters) will be
considered as variables which can assume the values T and F.

The statement calculus is concerned with the truth values of com-
posite formulas in terms of truth-value assignments to the prime com-
ponents and the interrelations of the truth values of composite formulas
having some prime components in common. As we proceed in this
study it will appear that those formulas whose truth value is T for every
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assignment of truth values to its prime components occupy a central
position. A formula whose value is T, for all possible assignments of truth
values to its prime components, is a tautology or, alternatively, such
a formula is valid (in the statement calculus). We shall often write

GA

for "A is valid" or "A is a tautology."f Whether or not a formula A
is a tautology can be determined by an examination of its truth table.
If the prime components in A are P1, P2, , P,,, then A is a tautol-
ogy if its value is T for each of the 2" assignments of T's and F's to
Pt, P2, , P,,. For example, P -- P and P A (1' -4 Q) -* Q are tau-
tologies, whereas P --' (Q --> R) is not. These conclusions are based on
an examination of Tables I, II, and 111, below.

Table I
PJP--4P P

T

F

Q

Table II Table III
P A (P -- Q) -- Q P Q R P -> (Q --> R)

T T T
T T F

F T

F F

T T T T T T
F F T T T F

F T T T F T
F T T T F F

F T T

F T F

F F T

F F F

T T

F F

T T

T T

T T

T F

T T

T T

The definition of validity provides us with a mechanical way to
decide whether a given formula is valid--namely, the computation and
examination of its truth table. Although it may be tedious, this method
can always be used to test. a proposed formula for validity. But, clearly,
it is an impractical way to discover tautologies. This state of affairs has
prompted the derivation of rules for generating tautologies from tau-
tologies. 'I he knowledge of a limited number of simple tautologies and
several such rules make possible the detivation of a great variety of
valid formulas. We develop next several such rules and then imple-
ment their with a list of useful tautologies.

THEOREM 3.1. Let B be a formula and let B* be the formula
resulting from B by the substitution of a formula A for all occur-
rences of a prime component P contained in B. If l- 13, then r- B*.
t This symbol for validity (l=) appears to be due to Klecne.
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Proof. For an assignment of values to the prime components of
B* there results a value v(A) of A and a value v(B*) of 13*. Now
v(B*) = v(B), the value of B for a particular assignment of values
to its prime components, including the assignment of v(A) to P. If
B is valid, then v(B) and hence v(B*) is always T. That is, if B is
valid, then so is B*.

EXAMPLES
3.3. From Table IV below it follows that G P V Q E-a Q V P. Hence, by

Theorem 3.1, !_ (R --- S) V Q <-' Q V (R --I S). A direct verification of this
result (Table V), using the reasoning employed in the proof of Theorem 3.1,
should clarify matters, if need be. To explain the relationship of Table V to
Table IV, we discuss the displayed line of Table V.

Table IV Table V

1' Q PV QE-+Q VP R S Q (R - S) V Q <--' Q V (R --' S)

T
T
F

F

T
F

T
F

T
T

F T T T T T F T F T F T T F

There was entered first (at two places) the value F of R -' S for the assignment
of T to R and F to S. Then the value T assigned to Q was entered twice. The
rest of the computation is then a repetition of that appearing in the third line
of Table IV after the entries underlined there have been made.

3.4. The practical importance of Theorem 3.1 is that it provides a method
to establish the validity of a formula without dissecting it all the way down to
its prime components. An illustration will serve to describe the application we
have in mind. Suppose the question arises as to whether the formula

(RVS) A ((RVS)-4(PAQ))-'(PAQ)
is a tautology. The answer is in the affirmative, with Theorem 3.1 supplying
the justification, as soon as it is recognized that the formula in question has the
"same form as" the tautology P A (P --+ Q) --' Q (Table II), in the sense that
it results from P A (1' -' Q) -* Q upon the substitution of R V S for P and
P A Q for Q.

We introduce next a relation for formulas. For the definition it is
convenient to interpret formulas as truth functions and observe that
a formula whose prime components are P1, P2, , P. may be regarded
as a function of an extended list P,, . , 1',,, . , P,,, of variables. Let us
now agree to call formula A equivalent to formula B, symbolized

A eq B,
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if they are equal as truth functions of the list of variables P1, P2, . , Pm,
where each P occurs as a prime component in at least one of A and B.
In terms of truth tables, the definition amounts to this. Suppose that
I P,, P2, . -, P,4 is the union of the sets of prime components contained
in A and B, respectively, and that we compute the truth tables of A and
of B as if both contained P,, P2, . , P,,, as prime components. Then
A eq B if the resulting truth tables are the same. For example, from
Tables VI and VII below we infer that (P--; Q) eq -,P V Q and
Peg PA (QV -,Q).

Table VI Table VII
P Q P -> Q -1P V Q P Q P P

T T
T F

F T
F F

T
F

T
T

T T T
F T F

T F T
T F F

T T
T T
F F

F F

It is left as an exercise to prove that eq is an equivalence relation on
every set of formulas and, further, that it has the following substitutivity
property: If CA is a formula containing a specific occurrence of the
formula A and Ca is the result on replacing this occurrence of A by a
formula B, then

if B eq A, then egCA.
Henceforth, equivalent formulas will be regarded as interchangeable,
and the substitution property will often be employed without comment.
Equivalence of formulas can be characterized in terms of the concept
of a valid formula, according to the following theorem.

TIIEOREM 3.2. KA+->BifAegB.
Proof. Let P,, P2, : , P,,, be the totality of prime components ap-
pearing in A and B. For a given assignment of truth values to these
components, the first part of the computation of the value of A -+ B
consists of computing the values of A and B, after which the compu-
tation is concluded by applying the table for the biconditional. Ac-
cording to this table, the value of A 4-1 B is T if the values computed
for A and B are the same.

COROLLARY. Let CA be a formula containing a specified occur-
rence of the formula A and let CD be the result of replacing this
occurrence of A by a formula: B. If t- A 4--> B, then t= CA 4-> CB.
If t=CA,then t=Co.

This proof is left as an exercise.
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THEOREM 3.3. If A and K A - - + B , then 1= B.

Proof. Let P,, P2, , P,,, be the totality of prime components ap-
pearing in A and B. For a given assignment of truth values to these,
the first part of the computation of the value of A --> B consists of
computing the values of A and B, after which the computation is
completed by applying the table for the conditional. The assump-
tions A and 1= A --+ B imply that both the value obtained for A
and that for A -- B are T. According to the table for A --> B, this
implies that B must also have the value T. Since this is the case for
all assignments of values to P,, P2, , Pm, B is valid.

As the next theorem we list a collection of tautologies. It is not in-
tended that these be memorized; rather, they should be used for ref-
erence. That many of the biconditionals listed are tautologies should
be highly plausible on the basis of meaning, together with Theorem 3.1.
That each is a tautology may be demonstrated by constructing a truth
table for it, regarding the letters present as prime formulas. Then,
once it is shown that the value is T for all assignments of values to the
components, an appeal is made to the substitution rule of Theorem 3.1
to remove the restriction that the letters be prime formulas. In the
exercises for this section the reader is asked to establish the validity of
some of the later formulas by applying one or more of Theorems
3.1--3.3 to tautologies appearing earlier in the list.

THEOREM 3.4.
Tautological Conditionals

1.1=AA(A>B)-4 B.
2. 1= -,BA
3. k= -,AA (AV 13)>B.
4. tzA-a(B-) AA13).
5. k=AAB--->A.
6. 1= A --> A V B.
7. 1- (A -* B) A (B -> C) - > (.4 --a C).
8. - (A A B-> C) -- (A > (B -- > C)).
9. 1= (A --> (13 -+ C)) -> (A A B -- C).

10. 1= (A --> B A -, B) > -, A.
11. (A -- B) --* (A V C --* B V C.').
12.

(A -* B) --* ((B --> C) > (A -). C)).
14. 1= (A EI 13) A (B .-> C) > (A .--3 C).
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Tautological Biconditionals

15. t= AAA.
16. - - , A A
17. (A+-* B) +-4 (B A).
18. (A -4 B) A (C ---> B) E--> (A V C ---* B).
19. t= (A -4 B) A (A C) 4-4 (A -a B A C).
20. K (A-4 B).+(-,B-- -, A).
21. KAVB4BvA. 21'. tAABt-+BAA.
22. (A V B) V C H

AV(BVC).
22'. 1= (AAB)ACH

A A (B A C).
23. 1= AV (BAC) -

(A V B) A (A V C).
23'. KAA(BVC)f-->

(AAB)V (A A C).
24. i=AvA<--'A. 24'. IzAAA+-+A.
25. t= -, (A V B) . >

-,A A -,B.
25'. t= -, (AAB)<--4

-,A V -,B.

Tautologies for Elimination of Connectives

26. KA-'B4-,AVB.
27. I A -->BH
28. KAVB<--
29. KAVB<--
30. t7- AAB<--
31. l AAB
32. t= (A+-->B)*-+(A-). B) A (B--->A).

We conclude this section with the description of a powerful method
for obtaining tautologies from scratch. Initially we consider only for-
mulas composed from prime formulas P,, P2, , 1' using -,, A, and
V. The denial, Ad, of such a formula A is the formula resulting from
A by replacing each occurrence of A by V and vice versa and replacing
each occurrence of P, by an occurrence of -, P; and vice versa. As
illustrations of denials in the present context we note that the denial
of P V Q is -1P A -, Q and the denial of -, (-, P A Q) is -1 (P V
The theorem relating denials and tautologies follows.

THEOREM 3.5. Let A be a formula composed from prime com-
ponents using only -,, A, and V, Let Ad be the denial of A. Then
K -,AHAd.
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A proof of this assertion can be given by induction on the number of
symbols appearing in a formula. We forego this, but do include in the
first example below a derivation of an instance of the theorem. An-
other example describes the extension of the theorem to the case of a
formula which involves --f or 4--p.

EXAMPLES
3.5. An instance of Theorem 3.5 is the assertion that

K-1((-,P V Q) V (Q A (R V -1 P))) 4 (P A -,Q) A (-i Q V (--iR A P)),
or, in other words, that the left-hand side and the right-hand side of the bi-
conditional are equivalent formulas. Using the properties of transitivity and
substitutivity of equivalence, this is established below. Each step is justified by
the indicated part of Theorem 3.4 (in view of Theorem 3.2).

-, ((-,P V Q) V (Q A (R V -,P)))
eq-,(-,PVQ)A-i(QA(RV-,P)) (25)
eq (-,-,P A -,Q) A (-,Q V -,(R V -1 P)) (25, 25')
eq (--i --i P A -,Q) A (-'Q V (-1R A -,-,P)) (25)
eq (P A -,Q) A (-,Q V (-,RAP)) (16)

3.6. Using tautology 32 in Theorem 3.4 we can derive from a formula in
which appears an equivalent formula in which H is absent. For instance,

P 4-+ (Q A R) eq (P - Q A R) A (Q A R -4 P).
That is, H can be eliminated from any formula. Similarly, using tautology
26 or 27, -a can be eliminated from any formula. Thus, any formula A is
equivalent to a formula B composed from prime components using -,, A,
and V. Then we may define the denial of A to be the denial of B.

3.7. According to the preceding example, H and -> can be eliminated
from any formula. Using tautology 29 it is possible to eliminate V or (with
tautology 31), equally well, A. That is, any formula is equivalent to one com-
posed from prime components using -, and V or using -, and A. This con-
clusion should be recognized as merely another version of a result obtained in
Example 3.2.

3.8. From tautology 22 follows the general associative law for V, which
asserts that however parentheses arc inserted in A, V A2 V V A. to render
it unambiguous, the resulting formulas are equivalent. From tautology 22'
follows the corresponding result for A A.

EXERCISES
3.1. Referring to Example 3.2, write each of the following formulas as a truth

function in outfix notation. For example --,P --' (Q V (R A S)) becomes
-+ (-,P, V (Q, A (R, S)).
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(a) P A P -* (Q -R) H Q -- * (P - 4 R).
(b) -,P - Q. (1) P V R -> (B A (S V -,P)).
(c) P V (Q V R). (g) (P - Q) --> (S A -,P -> Q).
(d) P A (Q-->B).
3.2. (a) Referring to Example 3.2, complete the proof that every truth func-

tion can be generated from -,p, p V q, and p A q.
(b) Referring to the same example, show that every truth function can

be generated from p(q.
3.3. Suppose that P,, P2, , P. are prime components of A. Show that the

truth table of A, regarded as having P1, , P,,, , P," as prime components
can be divided into 2'"`-" parts, each a duplicate of the truth table for A com-
puted with P1, Pz, , P. as the prime components.

3.4. Prove that eq is an equivalence relation on every set of formulas and
that it has the substitutivity property described in the text.

3.5. Prove the results stated in the Corollary to Theorem 3.2.
3.6. Derive each of tautologies 28-31 from earlier tautologies in Theorem

3.4, using properties of equivalence for formulas. As an illustration, we derive
tautology 27 from earlier ones. From 26, A -a --I B eq --1 A V --I B, and, in
turn, - A V -1 B eq -, (A A B) by 25'. Hence, A --> -i -1 B eq -I (A A --I B).
Using 16 it follows that A --+ B eq -, (A A -1 B), which amounts to 27.

3.7. Instead of using truth tables to compute the value of a formula, an arith-
metic procedure may be used. The basis for this approach is the representation
of the basic composite formulas by arithmetic functions in the following way.

Arithmetical
Formula representation

-'P 1 + P
P A Q P -I- Q+ PQ
PVQ PQ
1' Q (1 -I- P) Q
P f- Q P -}- Q

When the value T (respectively, F) is assigned to a prime component in a for-
mula - for example, 1' -the value 0 (respectively, 1) is assigned to the variable
P in the associated arithmetical representation. Further, values of the arith-
metical functions are computed as in ordinary arithmetic, with one exception:
namely, 1 + 1 = 0.

In each case a simple calculation shows that when the formula takes the
value T (respectively, F), then its arithmetical representation takes the value 0
(respectively, 1). In these terns, tautologies are represented by functions which
are identically 0. For example, that K P V -j P is clear from the fact that
P V --IP is represented by P(1 + P). To prove that the formula in 1 of Theo-
rem 3.4 (regarding A and B as prime components) is a tautology, we form first
[corresponding to A A (A -+ 13)J,
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A + (1 -1- A) B -1- A(1 + A) B,

which reduces to A + (1 + A)B since A(1 + A) is identically 0. Then to the
entire formula in I corresponds the function

(I + A + (1 + A) B) B,

which, as one sees immediately, is identically 0.
In the algebra at hand, 2x = 0, x(x + 1) = 0, and x2 = x for all x. These

facts make the simplification of long expressions an easy matter.
Prove some of the tautologies in Theorem 3.4 by this method.
3.8. (a) With Exercise 3.7 in mind, show that the function (I + P)(1 + Q)

is an arithmetical representation of the truth function PIQ defined
in Example 3.2.

(b) The result in (a), together with that in Exercise 3.2(b), may be re-
formulated as follows: Every mapping on (0, 1) ft into (0, 11 can be
generated from the mapping f : {0, 1) 2 -} {0, 1 ) such that f (x, y) _
(1 + x) (1 +y). Show that the same is true ofg: {0, 1}a {0, 1},
where g(x, y, z) = 1 + x -1- y -1- xyz.

4. The Statement Calculus. Consequence

In the introduction to this chapter we said that it was a function of
logic to provide principles of reasoning--that is, a theory of inference.
In practical terms this amounts to supplying criteria for deciding in a
mechanical way whether a chain of reasoning will be accepted as
correct on the basis of its form. A chain of reasoning is simply a finite
sequence of statements which are supplied to support the contention
that the last statement in the sequence (the conclusion) may be inferred
from certain initial statements (the premises). In everyday circum-
stances the premises of an inference are judged to be true (on the basis
of experience, experiment, or belief). Acceptance of the premises of an
inference as true and of the principles employed in a chain of reason-
ing from such premises as correct commits one to regard the conclusion
at hand as true. In a mathematical theory the situation is different.
There, one is concerned solely with the conclusions (the so-called
"theorems" of the theory) which can be inferred from an assigned in-
itial set of statements (the so-called "axioms" of the theory) according
to rules which are specified by some system of logic. In particular, the
notion of truth plays no part whatsoever in the theory proper. The
contribution of the statement calculus to a theory of inference is just
this: It provides a criterion, along with practical working forms thereof,
for deciding when the concluding sentence (a statement) of an argu-
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ment is to be assigned the value T if each premise of the argument is
assigned the truth value T. This criterion is in the form of a definition.
The statement B is a consequence of statements At, A2, A,,, (by the
statement calculus), symbolized

A,, A2, ... , Am 1= B,

iff for every truth-value assignment to each of the prune formulas
1',, P2, , P,, occurring in one or more of A,, A2j , A,,,, and B, the
formula B receives the value T whenever every A receives the value T.
In terms of truth tables, "A,, A2, , Am K B" means simply that if
truth tables are constructed for A,, A2, , Am, and B, from the list
P,, P2, , P. of prime formulas occurring in one or more of these
formulas, then B receives the value T at least for each assignment to
the F's which make all A's simultaneously T.

EXAMPLE
4.1. From an inspection of Table VIII below we obtain the following three

illustrations of our definition:

P, R, Q A P --> -, R l= --, Q, (line 3)
P,P--*R,RK PV Q R,
Q A P - --, R, --, Q, 1' - R l -, (P A Q).

(lines land 3)
(lines 3, 7, 8)

P Q R QAP--*-1R
Table VIII

P P Q -,(PAQ)

T T T F F T T F

T T F T F F F F

T F T T T T T T
T F F T T F F T
F T T T F T T T
F T F T F T F T
F F T T T T T T
F F F T T T T T

THEOREM 4.1.
(I) A 1= B iff l= A - - + B.

(II) A1, A2, , Am 1= B iff A,AA2A AAm1=B or, if
KAlAA2A ... AA,,--+ B(m> 2).

Proof. For (I), let A 1= B. By the table for --+, A > B receives the
value F if A receives the value T, and, simultaneously, B receives the
value F. From the hypoth-,sis, this combination of values does not
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occur. Hence A -+ .13 always receives the value T, that is, t= A -> B.
For the converse, let t= A --* B, and consider an assignment of
values to the prime components such that A receives the value T.
Since A -4 B receives the value T, it follows from the table for -
that B takes the value T, whence, A J-_ B.

The first assertion in (II) follows from the table for A, and the
second follows from the first by an application of (I).

COROLLARY. A,, ,Am_,,Am t- BiffA,, -, Am-, t-_ Am B.
More generally, At, , Am_t, Am l B iff t-- A, --, (A2 -.* (
(Am -.._, B) ... )).

Proof. For m = 1, the first assertion is (I) of the theorem. So, assume
that A,, , Am_,, A. f= B for m > 1. Then f= (At A . A Am_,)
A A,,,--* B, according to the theorem. From tautology 8 of Theo-
rem 3.4 and Theorem 3.3, we deduce that t= (A, A A Am_,)

(Am ---> B). According to (1) of the theorem, it follows that A, A
A Am_, t= Am --+ B and hence, by (II), that A,, , A,,,_, I- Am

-> B. The converse is established by reversing the foregoing steps.
Finally, the second assertion follows by repeated application of the

first.

Thus, the problem of what statements arc consequences of others
(by the statement calculus) is reduced to the problem of what state-
ments arc valid (which accounts for the importance of tautologies). On
the other hand, there is something to be said for approaching the con-
cept of consequence directly. One reason is the possibility of converting
the definition into a working form which resembles that used in math-
ematics to infer theorems from a set of axioms. Indeed, we can sub-
stantiate a working form as a sequence of formulas (the last formula
being the desired consequence of the premises) such that the presence
of each is justified by a rule, called a rule of inference (for the state-
ment calculus). The basis for the rules of inference which we shall
introduce is the following theorem.

THEOREM 4.2.

(I) At, A2, ,A,,,1 Aifori= 1, 2, - , ,n.
(II) If At, A2, - ,At= B;for j = 1, 2, ,p,andifB,,B2,

B,, C, then At, A2, -, A. I= C.
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Proof. Part (I) is an immediate consequence of the definition of
"A,, A2, , A. 1= B." For (II) we construct a truth table from the
list P1, P2j - , P. of all prime components appearing in at least one
of the A's, the B's, and C. Consider any row in which A,, A2, , A,,,
each receive the value T. Then, by the hypotheses, each B has the
value T, and hence C has the value T. That is, for each assignment
of values to the P's such that every A takes the value T, formula C
receives the value T. This is the desired conclusion.

With this result, a demonstration that a formula B (the conclusion)
is a consequence of formulas A1, A2, - , A. (the premises) may be pre-
sented in the form of a string (that is, a finite sequence) of formulas,
the last of which is B and such that the presence of each formula E is
justified by an application of one of the following rules.

Rule p : The formula E is a premise.
Rule t: There are formulas A, , D preceding E in the string such

that t= A A A D -' E.
That is, we contend that A,, A2, , A. K B if we can concoct a

string
E,, E2, ... , E,(= B)

of formulas such that either each E is a premise (rule p) or there are
preceding formulas in the string such that if C is their conjunction,
then C - E (rule t). Indeed, assuming that each entry in the dis-
played sequence can be so justified, we shall prove that

A,, A2, - , A. i (any E in the sequence).
This is true of E_, by Theorem 4.2(I). Assume that each of E,, E2, .,
Ek_, is a consequence of the A's; we prove that the same is true of the
next formula Ek. If Ek is a premise, then Theorem 4.2(I) applies.
Otherwise, there are formulas preceding Ek such that if C is their con-
junction, then i C-> Ek. Let us say

E A E,, A ... A E,. -f Ek.

Then, by Theorem 4.1 (II),
('

E,,, E,,,
. . ., E`. Ek,

and, by assumption,

A1, A2, ...,AmI=Er j = 1, 2, ...,s.
Hence, by Theorem 4.2(11),

A1, A2, ... , A. K Ek.
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We note, finally, that by an application of rule t any tautology may
be entered in a derivation. Indeed, if i D, then for any formula A we
have K A -+ D. Thus, D may be included in a derivation by an appli-
cation of rule l wherein we take any premise as the "A."

The examples which follow illustrate the foregoing method for demon-
strating that some formula is a consequence of given formulas. To make
the method entirely definite, let us agree that when applying rule t,
only the tautological conditionals which appear explicitly in The-
orem 3.4 or are implicit in the biconditionals of that theorem (for ex-
ample, A H A yields the tautological conditional 1= A -a A and
K -, -, A H A yields 1= -i -1 A ---> A and i A --+ -i A) may be used.
Admittedly, this is an arbitrary rule. Our excuse for making it is that
it serves to make the game to be played a definite one.

EXAMPLES
4.2. We demonstrate that

AVB,A-*C,B--+DrCVD.
An explanation of the numerals on the left is given below.

{1} (1) A --+C Rulep
{1 } (2) A V B --+ C V B Rule t; 1= (1) -a (2) by

tautology 11.
{3} (3) B -- 1) Rule p
{3) (4) C V B --' C V 1) Rule i; G (3) - (4) by

tautology 11.
{1, 3} (5) A V B --j C V I) Rule t; l (2) A (4) - (5) by

tautology 7.
(6) (6) A V B Rule p

11, 3, 6) (7) C V D Rule t; 1= (6) A (5) --, (7) by
tautology 1.

The numbers in parentheses adjacent to each formula serve to designate that
formula as well as the line of the derivation in which it appears. The set of
numbers in braces for each line corresponds to the premises on which the for-
mula in that line depends. That is, the formula in any line n is a consequence
of the premises designated by the numbers in braces in that line. Thus, the
formula in line 5 is a consequence of the premise in line 1 and the premise in
line 3, and the formula in line 7 is a consequence of the premises in lines 1, 3,
and 6--that is, of all the premises. In particular, for a line which displays a
premise there appears in braces at the left just the number of that line, since
such a formula depends on no other line. Using the brace notation in connec-
tion with the numerals on the left is deliberate in that it suggests that the for-
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mula in that line is a consequence of the set of premises designated by those
numbers.

We now rewrite the above derivation, incorporating some practical abbre-
viations. In this form the reader is called on to supply the tautologies employed.

{1} (1) A -> C p
{1) (2) A V B--3CV B It
(3) (3) B -- D p
{3} (4) CV

B D 2,41
{6} (6) A V B p

{1,3,6) (7) CV D 5,61

4.3. As a more elaborate illustration we prove that

WVP->I,I-CVS,S-U,-,CA-,U1=-,W
by the following string of thirteen formulas.

{1) (1) -, C A -, U p

{1) (2) U 1 1

(3) (3) S -> U p
{1,3} (4) -1S 2,31

{I} (5) -1C 1 t
{1, 3} (6) -1C A --1S 4, 5 t
11,3) (7) -, (C V S) 6 t

{8} (8) W V P -+I p
{9} (9) 1 -> C V S p

{8,9} (10) WVP -). C VS 8,91
{1,3,8,9) (11) -,(WVP) 7,101
{1,3,8,9) (12) -,WA -,P 111
(1,3,8,9) (13) -,W 121

We note that the foregoing takes the place of a truth table having 26 = 64
lines for the purpose of verifying that

t= (WVP - I) A (I - C V S) A (S -3 U) A (-1 (: A U) -> -, W.

4.4. Many theorems in mathematics have the form of a conditional, the
assumptions being the axioms of the theory under development. The symbolic
form of such a theorem is

A,, A2, , A. k= B . C,

where the A's are the axioms and 1? -4 C is the consequence asserted. In order
to prove such a theorem it is standard practice to adopt B as a further assump-
tion and then infer that C is a consequence. Thereby it is implied that

A1, A2, ..., A,,, K B - C ifF A1, A2, ..., A,,,, B k= C.

This is correct according to the Corollary to Theorem 4.1. It is convenient to
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formulate this as a third rule of inference, the rule of conditional proof, for the
statement calculus.

Rile rp: The formula B -. C is justified in a derivation having At, Az,
A. as premises if it has been established that C is a consequence of At, Az, ,

Am, and B.
As an illustration of the use of this rule we prove that

A-4(B-+C),-,D V A,B1=D--*C.
(1) (1) A -+ (B ---> C) p
{2} (2) -11) V A fi
{3} (3) B P
{4) (4) D p (introducing "D" as an

additional premise)
{2, 4} (5) A 2,41

(1,2,4) (6) B C 1, 5 1

{1, 2, 3, 41 (7) C 3, 6 t
{1, 2, 3} (8) D -* C 4, 7 rp

The usefulness of the braced numbers to show precisely what premises enter
into the derivation of the formula in that line is clear.

4.5. Even if an alleged consequence of a set of premises does not have the
form of a conditional, the application of the strategy as described in the pre-
ceding example may simplify a derivation. As an illustration we rework the
first example, starting with the observation that the conclusion C V D is equiv-
alent to -,C --> D. This suggests adding -,C as a premise and hoping that D
can be derived as a consequence of this and the other premises. An advantage
gained thereby is the addition of a simple assumption. The derivation follows.

{1} (1)AVB p
{2} (2) A -- C p
{3} (3) B - I) p
{4} (4) -,C p

{2, 4} (5) -, A 2, 4 t
{1, 2, 4) (6) B 1, 5 t

{1,2,3,4) (7) D 3,61
{1,2,3) (8) -,C -- D 4,7cli
{1,2,3} (9) CVD 81

4.6. Each of the tautological implications in Theorem 3.4 generates a rule
of inference, namely, the instance of rule t, which is justified by reference to
that tautology alone. For example, tautology 1 in Theorem 3.4 determines
the rule

from A and A --i B to infer B.
This is called the rule of detachment or modus ponens. In a textbook devoted
to logic, names for many rules of inference of this sort will be found. Probably
modus ponens is the one used most frequently in derivations.



186 Logic I Char. 4

EXERCISES

Note: It is intended that the restrictions described prior to Example 4.2 shall
apply to applications of rule 1.

4.1. By an examination of Table VIII in Example 4.1, justify the conclusions
drawn in that example.

4.2. Complete each of the following demonstrations of consequence by sup-
plying the tautologies employed and the numbering scheme discussed in Ex-
ample 4.2.

(a) A --> B, --1(B V C) l= --,A
A->11
-,(BVC)
-,11A-,C
-,11
A

(c) (A A B) V (C A D),
A--->

-,AA
A

A A

A C A ---> (C --> B), -, D V A,
DrB CAD --'B

D->AVC -,DVA
D 1)
AVC A
A->B A-->(C-*B)
C->B

C
B B

B

4.3. Justify each of the following, using only rules p and 1.

(a) -,AV B,C,->--, B

A E ->F1 AF.
(d) A->(BAC),-,BVD,(E->-,F)->-,D,B->(AA -,F.) K B-->E.
(e) (A --> B) A (C -> D), (B --> E) A (D --> F), -, (E A F), A --> C -,A.

4.4. Try to shorten your proofs of Exercise 4.3(a), (b), (c), (d) using rule cp
(along with rules p and t).

4.5. Can the rule of conditional proof be used to advantage in Exercise
4.3(e)? Justify your answer.
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5. The Statement Calculus. Applications

We now turn to some household applications of the theory of infer-
ence which we have discussed. Usually the circumstances accompany-
ing the presentation of an argument include the audience having the
privilege of accepting or rejecting the contention that some statement
B is a consequence of statements A,, A2, , A,,,. In this event, the man
who thinks for himself will want to prove either that B is a consequence
of the A's or that the argument is invalid, that is, that there can be
made an assignment of truth values to the prime components at hand
such that simultaneously each A receives value T, and B receives value F.
The most expedient way to cope with the entire matter is this: Assume
that B has value F and that each A has value T, and analyze the conse-
quences so far as necessary assignments of truth values to prime com-
ponents are concerned. Such an analysis will lead to either a contradic-
tion, which proves that B is a consequence of the A's, or an assignment
to each prime component such that all assumptions are satisfied, which
proves that the argument is invalid.

The foregoing method for proving that some formula is a consequence
of others undercuts that promoted in the preceding section since it
proceeds so quickly. However, the earlier method has (at least peda-
gogical) merits. For example, it leads to an acquaintance with the tau-
tologies in Theorem 3.4. Instances of these are commonplace in proofs
in mathematics, and the reader should learn to recognize them as such.
As an illustration, tautology 20 justifies the familiar conclusion that if
the contrapositive, - Q -a -i P, of P -+ Q is a consequence of A, then
so is P--> Q.

EXAMPLES
5.1. Consider the following argument.

If 1 go to my first class tomorrow, then I must get up early, and
if I go to the dance tonight, I will stay up late. If I stay up late
and get up early, then I will be forced to exist on only five hours
of sleep. I simply cannot exist on only five hours of sleep. There-
fore, I must either miss my first class tomorrow or not go to the
dance.

To investigate the validity of this argument, we symbolize it using letters for
prime statements. Let C be "I (will) go to my first class tomorrow," G be "I
must get up early," D be "I (will) go to the dance tonight," S be "I will stay
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up late," and E be "I can exist on five hours of sleep." Then the premises may
be symbolized as

(C - C) A (1) - S),
SAC ->I,
-, E,

and the desired conclusion as
ACV -iD.

Following the method of analysis suggested above, we assume that -, C V -i D
has value F and that each premise has value T. Then each of C and D must have
value T. Further, according to the first premise, both C and S have value T.
This and the second premise imply that E has value T. But this contradicts the
assumption that the third premise has value T. Thus we have proved that
-,C V -1D is a consequence of the premises.

5.2. Suppose it is asserted that

A-'B,C-->D,AVCt= BAD.
Assume that B A D has value F and each premise has value T. The first assump-
tion is satisfied if T is assigned to B and F is assigned to D. Then C has value F,
and A has value T. With these assignments, each premise receives value T, and
B A D takes value F. Hence the argument is invalid.

Related to the foregoing, but distinct from it, is the question of the
satisfiability of a set of statements which is proposed as the set of prem-
ises for an inference. A set { A,, A2, - -, Am } of statements is satisfiable
(within the statement calculus) iff there exists at least one assignment
of truth values for the prime components such that the A's simultane-
ously receive value T. It is clear that {A,, A2, , Am} is satisfiable if
At A A2 A - A A. is T for at least one combination of truth-value as-
signments to the prime components and is not satisfiable if A, A A2 A

A Am is F for all combinations of truth-value assignments to the
prune components.

The nonsatisfiability of a set of statements can be established within
the framework of the methods described in the preceding section as
soon as the following dclinition is made. A contradiction is a formula
which always takes the value F (for example, A A --,A).

THEOREM 5.1 . A set { A,, A2, -, Am } of statements is not satis-
fiable if a contradiction can be derived as a consequence of the set.
Proof. Assume that A,, A2, , A,,, 1= B A -, B for some formula B.
Then A, A A2 A A A. -, B n -, B, and the conclusion follows
from the truth table for the conditional.
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Contradictions also play an important role in the method of indirect
proof (also called proof by contradiction or reductio ad absurdum
proof). The basis for this type of proof is the following result.

THEOREM 5.2. A,, A2, , K B if a contradiction can be
derived as a consequence of A,, A2, , A,,, and -, B.
Proof. Assume that A,, A2, . , A -, C for some for-
mula C. Then A,, A2, , A -, C. Consider now an
assignment of values to the prim; components at hand such that
every A receives value T. Then -, B ---3 C A -, C has value T. This and
the fact that C A -, (, receives value F imply that -, B has value F
and hence that B has value T.

EXAMPLES
5.3. We illustrate the usefulness of Theorem 5.1 in proving the nonsatis-

liiability of a set of statements. Such a proof follows the same pattern as one
devised to establish the correctness of an argument in all but one respect: in a
proof of the correctness of an argument the final line, which is the conclusion,
is assigned in advance, whereas, in a proof of nonsatisliability the final line is
any contradiction. For example, suppose that it is a question of the satisfiability
of a set of statements which may be symbolized as

AFiB, B --*C, - - 1

We adopt these as a set of premises and investigate what inferences can be made.

{1} (1) A <-> I. p
{2) (2) B -C p
{3} (3) -, C V 1) p
{4} (4) --,A --' D p
{5} (5) D P

(4,5) (6) -, -, A 4, 5t
{4, 5} (7) A 6t

(1,2) (8) A --I C 1,21
11, 2, 4, 5} (9) C 7,81

{3, 51 (10) -,C 3, 5t
{1, 2 ,3, 4, 5} (11) CA -,C 9,101

We conclude that the set is not satisfiable.

5.4. We could introduce a further rule of inference based on Theorem 5.2.
Alternatively, we may employ the rule of conditional proof and the tautology
r- (-, B --+ C A -,C) -b B to justify an indirect proof. As an illustration, we
rework Example 5.1 in this section, starting with the negation of the desired
conclusion as an additional premise.
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(1) (C-'G) A (D --'S)
(2) SAC-,E
(3)-,E
(4) -,(ACV -,D)
(5) C A D
(6) C

(7) C--'C
(8) G
(9) D - S

(10) D
(11) S
(12) S A G
(13) E
(14) Ii A -,E
(15) -, (-,(; V -,D) - E A -1E
(16) --j C V --,D

It is left as an exercise to supply the missing details.

p
p
p
p

i CHAP. 4

EXERCISES
Use the method discussed in this section to prove the validity or invalidity,

whichever the case might be, of the arguments in Exercises 5.1-5.12 below. For
those which are valid, construct a formal proof. In every case use the letters
suggested for symbolizing the argument.

5.1. Either I shall go home or stay and have a drink. I shall not go home.
Therefore I shall stay and have a drink. (II, S)

5.2. If John stays up late tonight, he will be dull tomorrow. If he doesn't
stay up late tonight, then he will feel that life is not worth living. Therefore,
either John will be dull tomorrow or he will feel that life is not worth living.
(S, D, L)

5.3. Wages will increase only if there i3 inflation. If there is inflation, then
the cost of living will increase. Wages will increase. 'Therefore, the cost of living
will increase. (W, I, C)

5.4. If 2 is a prime, then it is the least prime. If 2 is the least prime, then I
is not a prime. The number 1 is not a prime. Therefore, 2 is a prime. (P, L, N)

5.5. Either John is exhausted or he is sick. If he is exhausted, then he is con-
trary. Ile is not contrary. Therefore, he is sick. (E, S, C)

5.6. If it is cold tomorrow, I'll wear my heavy coat if the sleeve is mended.
It will be cold tomorrow, and that sleeve will not be mended. Therefore, I'll
not wear my heavy coat. (C, H, S)

5.7. If the races are fixed or the gambling houses are crooked, then the
tourist trade will decline, and the town will suffer. If the tourist trade decreases,
then the police force will be happy. The police force is never happy. Therefore,
the races are not fixed. (R, H, D, S, P)
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5.8. If the Dodgers win, then Los Angeles will celebrate, and if the White
Sox win, Chicago will celebrate. Either the Dodgers will win or the White Sox
will win. However, if the Dodgers win, then Chicago will not celebrate, and if
the White Sox win, Los Angeles will not celebrate. So, Chicago will celebrate
if and only if Los Angeles does not celebrate. (D, L, W, C)

5.9. Either Sally and Bob are the same age or Sally is older than Bob. If
Sally and Bob are the same age, then Nancy and Bob are not the same age.
If Sally is older than Bob, then Bob is older than Walter. Therefore, either
-Nancy and Bob are not the same age or Bob is older than Walter. (S, 0, N, W)

5.10. If 6 is a composite number, then 12 is a composite number. If 12 is a
composite number, then there exists a prime greater than 12. If there exists a
t'rirne greater than 12, then there exists a composite number greater than 12.
If 2 divides 6, then 6 is a composite number. The number 12 is composite.
Therefore, 6 is a composite number. (S, W, P, G, D)

5.11. If I take the bus, and the bus is late, I'll miss my appointment. If I
miss my appointment and start to feel downcast, then I should not go home.
If I don't get that job, then I'll start to feel downcast and should go home.
Therefore, if l. take the bus, and the bus is late, I will get that joh. (B, 1., M, D,
FI, J)

5.12. If Smith wins the nomination, he will be happy, and if he is happy, he
is not a good campaigner. But if lie loses the nomination, lie will lose the con-
fidence of the party. lie is not a good campaigner if he loses the confidence of
the party. If lie is not a good campaigner, then he should resign from the party.
Either Smith wins the nomination or he loses it. Therefore, he should resign
from the party. (N, H, C, P, R)

5.13. Investigate the following sets of premises for satisfiability. If you con-
clude that a set is not satisfiable by assigning truth values, then reaffirm this
using Theorem 5.1 and vice versa. Substantiate each assertion of the satisfi-
ability of a set of premises by suitable truth-value assignment,,

(a) A -, (B A C) (c) (A --> B) A (C --), D)
DV E- C

C-.-> -(IIV I)
-,CAEAI1

(B D) A (-1C--rA)
(E -4G) A (G-'-, D)
-,I- Z

(b) AV B -'CAD (d) (A-aBAC)A(D--), BAE)
DVE -'C (G-a--,A)AH--i1
AV --,G (1I--'I)-'GAD

-,(-,C--GIs)
(e) The contract is fulfilled if and only if the house is completed in February.

If the house is completed in February, then we can move in March 1.
If we can't move in March 1, then we must pay rent for March. If the
contract is not fulfilled, then we must pay rent for March. We will not
pay rent for March. (C, H, M, R)
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5.14. Give an indirect proof of the validity of the argument in the following.

(a) Example 4.3. (d) Exercise 5.7.
(b) Example 4.4. (e) Exercise 5.11.
(c) Example 5.1. (f) Exercise 5.12.

5.15. Prove that if A, -1B Ir- C (a contradiction), then A I-= B.

6. The Predicate Calculus. Symbolizing
Everyday Language

The theory of inference supplied by the statement calculus is quite
inadequate for mathematics and, indeed, for everyday arguments. For
example, from the premises

every rational number is a real number,
3 is a rational number,

certainly

3 is a real number

is justified as a conclusion. Yet the validity of this argument cannot be
established within the context of the statement calculus. The reason is
that the statement calculus is limited to the structure of sentences in
terms of component sentences, and the above inference requires an
analysis of sentence structure along the sul)ject--predicate lines that
grammarians describe. In other words, the statement calculus does not
break down a sentence into sufficiently "fine" constituents for most
purposes. On the other hand, with the addition of three additional
logical notions, called terms, predicates, and quantifiers, it has been
found that much of everyday and mathematical language can be sym-
bolized in such a way as to make possible an analysis of an argument.
We shall describe these three notions in turn.

It is standard practice in mathematics to introduce letters such as
"x" and "y" to reserve a place for names of individual objects. For
example, in order to determine those real numbers such that the square
of the number minus the number is equal to twelve, one will form the
equation x2 - x = 12, thereby regarding "x" as a placcholder for the
name of any such (initially unknown) number. Again, as it is normally
understood, the "x" in such an equation as

sine x + cost x = 1

reserves a place for the name of any real or, indeed, complex number.
As it is employed in "x2 - x = 12," one is accustomed to calling "x"
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an unknown, and in "sing x + cos2 x = 1" one is likely to refer to "x"
as a variable. The usage we shall make of letters from the latter part
of the alphabet in symbolizing everyday language shall be like that
just described- that is, as an unknown or a variable. In logic it is cus-
tomary to employ the word "variable" for either usage; the decision
as to whether "x" is intended to be a variable in the intuitive sense or
an unknown is made on the basis of the form of the expression in which
it appears. Since, ultimately, we intend to strip all symbols of any
meaning whatsoever, it is simplest to do this at the outset for variables.
This we do by defining an individual variable to be a letter or a letter
with a subscript or superscript. Variables constitute one class of terms.

We shall also find use for letters and symbols as names of specific,
well-defined objects; that is, we shall use letters and symbols for proper
names. Letters and symbols used for this purpose are called individual
constants. For example, "3" is an individual constant, being a name
of the numeral 3. Again, "Winston Churchill" is an individual con-
stant. In order to achieve a compact notation we shall use a letter from
the beginning of the alphabet to stand for a proper name if there is
no accepted symbol for it. For example, we might let

a = Winston Churchill

if we intend to translate the sentence
Winston Churchill was a great statesman

into symbolic form.
Proper names are often rendered by a "description," which we take

to be a name that by its own structure unequivocally identifies the
object of which it is a name. For example,

the first president of the United States
and

the real number x such that for all real numbers y, xy = y

are descriptions. If we let

b = George Washington,
then we may write

b = the first president of the United States.

Further, we have

1 = the real number x such that for all y, xy = y.

Collectively, individual variables and individual constants (either in
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the form of proper names or descriptions) are classified as terms. The
grammatical function of variables is similar to that of pronouns and
common nouns in everyday language, and the function of individual
constants is similar to the role of proper nouns.

We now turn to the notion of predicates. In grammar a predicate is
the word or words in a sentence which express what is said of the sub-
ject; for example, "is a real number," "is black," "is envious." In logic
the word "predicate" has a broader role than it has in grammar. The
basis for this is the observation that if a predicate is supplemented by
including a variable as a placeholder for the intended subject (for ex-
ample, "x is a real number"), the result behaves as a "statement func-
tion" in the sense that for each value of x (from an appropriate domain)
a statement results. Although "John loves" is not a predicate in gram-
mar, if "x" is introduced as a placeholder for the object (of John's
affections), which yields

John loves x,

the result is a statement function in the sense just described. An obvious
generalization is at hand, namely, the extension to statement functions
of more than one variable. Examples are

x is less than y,
x divides y,
z is the sum of x and y.

The upshot is the notion of an n-place predicate P(x,, x2, , as an
expression having the quality that on an assignment of values to the
variables x,, x2, - , x from appropriate domains, a statement results.
For convenience we include 0 as a value of n, understanding by a
0-place predicate a statement.

We now consider some examples of translations into symbolic form.

EXAMPLES
6.1. The sentence

(1) Every rational number is a real number

may be translated as

(2) For every x, if x is a rational number, then x is a real number.

In ordinary grammar, "is a real number" is the predicate of (1). In the transla-
tion (2) the added predicate "x is a rational number" replaces the common
noun "rational number." Using "Q(x)" for "x is a rational number" and "R(x)"
for "x is a real number," we may symbolize (2) as
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(3) For every x, Q(x) - R(x).

Further, the statement "3 is a rational number" may be symbolized by

(4) Q (3).

In terms of symbolism available at the moment, (3) and (4) are the translations
of the premises of the argument appearing at the beginning of this section.

6.2. The sentence
Some real numbers are rational

we translate as

For some x, x is a real number and x is a rational number.

Using the predicates introduced above, this may be symbolized as

(5) For some x, R(x) A Q(x).

6.3. The sentence

(6) For some x, R(x) --> Q(x)

should have the same meaning as

(7) For some x, -, R(x) V Q(x),

since we have merely replaced "R(x) -- Q(x)" by its equivalent "-y R(x) V
Q(x)." Now (7) may be translated into words as

There is something which is either not a real number or is a ra-
tional number.

Certainly, this statement [which has the same meaning as (6)] does not have
the same meaning as (5). Indeed, as soon as we exhibit an object which is riot
a real number we must subscribe to (6). In summary, (6) and (5) have different
meanings.

By assumption, on suitable assignments of values to the variables in
a predicate, a statement results. For example, if S(x) is "x is a sopho-
more," this predicate yields the statement "John is a sophomore." A
statement may also be obtained from S(x) by prefixing it with the
phrase "for every x":

(8) For every x, x is a sophomore.

No doubt, one would choose to rephrase this as

(9) Everyone is a sophomore.

The phrase "for every x" is called a universal quantifier. We regard
"for every x," "for all x," and "for each x" as having the same meaning
and symbolize each by

(bx) or (x).
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Using this symbol we may symbolize (8) or (9) as

(x)SW
Similarly, prefixing S(x) with the phrase "there exists an x (such

that)" yields a statement which has the same meaning as "There are
sophomores." The phrase "there exists an x" is called an existential
quantifier. We regard "there exists an x," "for some x," and "for at
least one x" as having the same meaning, and symbolize each by

(3x).

Thus, "(3x)S(x)" is the symbolic form of "There are sophomores."
In each of Examples 6.1 6.3 above a quantifier prefixes not merely a

predicate but a "formula in x," by which we shall understand for
the time being an expression compounded from one-place predicates
P(x), . using sentential connectives. Using the symbol introduced
for the universal quantifier, we can now render "Every rational number
is a real number" in its final form:

(10) (x)(Q(x) -* R(x)).
Possibly it has already occurred to the reader that this means simply
that Q C R. Indeed, if one recalls the definition of the inclusion rela-
tion for sets, it becomes clear that (10) is an instance of that definition.
Further, we note that (10) is characteristic of statements of the form
"Every so and so is a such and such."

Similarly, the sentence "Some real numbers are rational" may be
translated as
(11) (3x)(R(x) A Q(x)).

The meaning of this sentence is simply that R f1 Q is nonempty; that
is, it is a symmetrical form of the original sentence. A mistake commonly
made by beginners is to infer, since a statement of the form "Every so
and so is a such and such" can be symbolized as in (10), that. the state-
ment "Some so and so is a such and such" can be symbolized by

(3x)(R(x) -* Q(x)).

However, as is pointed out in Exaniple 6.3, this should have the same
meaning as

(3x)( R(x) V Q(x)).

This should be accepted as true as soon as we exhibit an object which
is not a real number. In particular, therefore, it has no relation to what
it is intended to say, namely, that some real numbers are rational.
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EXAMPLES
6.4. The notion of a formula in x, as (vaguely) described above, is the same

as that given in Chapter 1. There it was stated that such an expression is often
called a property (of x). Associated with a property is a set, according to the
intuitive principle of abstraction. Extending in the obvious way the notion of
a formula in x to that of a formula in x and y, one can associate with a formula
A(x, y) those ordered pairs (a, b) such that A(a, b) is true. That is, a formula in x
and y may be used to define a binary relation. This being so, formulas in two
variables are often called binary relations, those in three variables are called
ternary relations, and so on.

6.5. If A(x) is a formula in x, consider the following four statements.

(a) (x)A(x) (c) (x)(-1A(x))
(b) (3x)A(x). (d) (3x)(-A(x)).

We might translate these into words as follows.

(a) Everything has property A.
(b) Something has property A.
(c) Nothing has property A.
(d) Something does not have property A.

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday
meaning. Thus, for example, the existential quantifier may be defined in terms
of the universal quantifier by agreeing that "(3.x)A(x)" is an abbreviation for
« --I

(x) -, (A (x)). "

6.6. Traditional logic emphasized four basic types of statements involving
quantifiers. Illustrations of these along with translations appear below. Two of
these translations have been discussed.

All rationals are reals. (x)(Q(x) -' R(x))
No rationals are reals. (x)(Q(x) --+ n R(x)).
Some rationals are reals. (3x)(Q(x) A R(x)).
Some rationals are not reals. (3x)(Q(x) A -R(x)).

6.7. If the symbols for negation and a quantifier modify a formula, the order
in which they appear is relevant. For example, the translation of

-I(x)(x is mortal)

is "Not everyone is mortal" or "Someone is immortal," whereas the transla-
tion of

(x)(--I (x is mortal))

is "Everyone is immortal."
6.8. By prefixing a formula in several variables with a quantifier (of either
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kind) for each variable, a statement results. For example, if it is understood that
all variables are restricted to the set of real numbers, then

(x)(Y)(z)((x + y) + z = x + (y + Z))

is the statement to the effect that addition is an associative operation. Again,

(x) (3y) (x2 - y = y2 - x)

translates into "For every (real number) x there is a (real number) y such that
x2 - y = y2 - x." This is a true statement. Notice, however, that

(3y) (x) (x2 - y = y2 - x),

obtained from the foregoing by interchanging the quantifiers, is a different-
indeed, a false- statement.

6.9. We supplement the first remark in the preceding example with the ob-
servation that a formula in several variables can also be reduced to a statement
by substituting values for all occurrences of some variables and applying quan-
tifiers which pertain to the remaining variables. For example, the (false)
statement

(x) (x < 3)

results from the 2-place predicate "x < y" by substituting a value for y and
quantifying x.

We conclude this section with the remark that there are no mechani-
cal rules for translating sentences from English into the logical notation
which has been introduced. In every case one must first decide on the
meaning of the English sentence and then attempt to convey that same
meaning in terms of predicates, quantifiers, and, possibly, individual
constants.

Beginning with the exercises below we shall often omit parentheses
when writing predicates. For example, in place of "A(x)" we shall
write "Ax," and "A (x, y)" will be written simply as "Axy."

EXERCISES
6.1. Let Px be "x is a prime," Ex be "x is even," Ox be "x is odd," and Dxy

be "x divides y." Translate each of the following into English.

(a) P7. (e) (x)(--,Ex -4 --i D2x).
(b) E2 A P2. (f) (x)(Ex -' (y)(Dxy -Ey)).
(c) (x) (D2x -' Ex). (g) (x)(Px -y (3y) (Ey A Dxy)).
(d) (3x) (Ex A Dx6). (h) (x)(Ox - (y)(Py --i -,Dxy))
(i) (3x) (Ex A Px) A-,(3x)((Ex A Px) A (3y) (x 0 y A Ey A Py)).

6.2. Below are twenty sentences in English followed by the same number of
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sentences in symbolic form. Try to pair the members of the two sets in such a
way that each member of a pair is a translation of the other member of the pair.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)
(k)

(1)

(m)

(n)

(0)

(p)

(q)

(r)

(s)
(t)

All judges are lawyers. (Jx, Lx)
Some lawyers are shysters. (Sx)
No judge is a shyster
Some judges are old but vigorous. (Ox, Vx)
Judge Jones is neither old nor vigorous. (j)
Not all lawyers are judges.
Some lawyers who are politicians are Congressmen. (Px, Cx)
No Congressman is not vigorous.
All Congressmen who are old are lawyers.
Some women are both lawyers and Congressmen. (Wx)
No woman is both a politician and a housewife. (lIx)
There are some women lawyers who are housewives.
All women who are lawyers admire some judge. (Axy)
Some lawyers admire only judges.
Some lawyers admire women.
Some shysters admire no lawyer.
Judge Jones does not admire any shyster.
There are both lawyers and shysters who admire Judge Jones.
Only judges admire judges.
All judges admire only judges.

(a)' (3x)(Wx A Cx A Lx).
(b)' -, Oj A -, Vj.
(c)' (x)(Jx -- -,Sx).
(d)' (3x)(Wx A Lx A Hx).
(e)' (x) (Ajx --r -m Sx).
(f)' (x) (Jx -4 Lx) .
(g)' -, (x) (Lx -* Jx).
(h)' (x)(Cx A Ox --+ Lx).
(i)' Ox) (Lx A Sx).
(j)' (3x)(Lx A Px A Cx).
(k)' (x) (Wx --> -, (Px A IIx) ).
(1)' (x) (Cx - Vx).
(m)' (3x) (Jx A Ox A Vx).
(n)' (x)(y)(Ayx A Jx ---' .Iy).
(o)' (3x)(Sx A (y)(Axy -* -,Ly))
(p)' (3x) (3y) (Lx A Sy A AV A Ayj).
(q)' (x) (Wx A Lx - (3y) (Jy A Axy)).
(r)' (3x) (Lx A (3y) (Wy A Axy) )
(s)' (x)(Jx --+ (y)(Axy - Jy)).
(t)' *(3x) (Lx A (y) (Axy --4 Jy)).
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7. The Predicate Calculus. A Formulation

The examples and exercises of the preceding section serve to sub-
stantiate the contention that if the sentential conncctives are supple-
mented with predicates and quantifiers, much of everyday language can
be symbolized accurately. Predicate calculus is concerned with a theory
of inference based on the structure of sentences in terms of connectives,
predicates, and quantifiers. In particular, therefore, it is an extension
of the statement calculus. The type we shall discuss admits of quantifi-
cation only of individual variables. To distinguish this simple type from
others, it is usually called restricted predicate calculus or predicate
calculus of first order. Incidentally, it is not our intention to develop
the restricted predicate calculus to the same degree of completeness as
we did the statement calculus. Rather, we shall merely formulate it
and sketch how it might be developed and applied. A formulation
which is comparable to that of the statement calculus in Section 3 is
our starting point.

We assume that for each of n = 0, 1, 2, there is given an un-
specified number of n-place predicates (or, statement functions of n var-
iables). 'These we shall denote by such symbols as P(x, y) (to stand for
some one 2-place predicate), P(x, y, z) (to stand for some one 3-place
predicate which would necessarily represent a predicate different from
that symbolized by P(x, y), being a function of a different number of
variables), Q(x, y, z) (to stand for another 3-place predicate), R (to stand
for some one 0-place predicate, that is, a statement), and so on. It is
assumed that the set of all n-place predicates for n = 1, 2, is non-
empty. Henceforth we shall call the given predicates predicate letters.

From the given set of predicate letters we generate those expressions
which we shall call "formulas (of the predicate calculus)." A prime
formula is an expression resulting from a predicate letter by the sub-
stitution of any variables, not necessarily distinct, for those variables
which appear in the predicate letter. For example, some of the prime for-
mulas which the predicate letter P(x, y, z) yields are P(x, y, z), P(x, y, y),
P(y, x, x), and I'(tt, u, u). We extend the set of all prime formulas by ad-
joining all those expressions which can be formed by using, repeatedly
and in all possible ways, the sentential connectives and quantifiers. Pre-
cisely, we extend the set of all prime formulas to the smallest set such
that each of the following holds. If A and B are members of the set, then
so are -1(A), (A) A (B), (A) V (B), (A) -* (B), and (A) H (B). Also,
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if A is a member of the set and x is a variable, then (x)A and (3x)A are
members of the set. The members of this extended set are called for-
mulas. Those which are not prime formulas are called composite
formulas.

Parentheses are inserted automatically in a formula, but in some
cases arc unnecessary. (Indeed, the sole purpose of such lavish use of
parentheses is to make possible the formulation of a mechanical pro-
cedurc for demonstrating that some juxtaposition of symbols is a for-
mula.) In other cases parentheses can be omitted by the same con-
ventions established earlier. We extend those conventions by agreeing
that quantifiers, along with -,, have the least possible scope. For
example, (3x)A V B stands for ((3x)(A)) V (B).

The foregoing description is vague only with respect to the nature
of a predicate letter. From the standpoint of the theory of the first-
order predicate calculus, the nature of predicate letters is irrelevant,
for there they are treated in a purely formal way, that is, simply as
certain strings of letters, parentheses, and commas. From the stand-
point of the applications, the vagueness is deliberate, for thereby ver-
satility is achieved. The examples which follow may serve to sub-
stantiate this assertion. Each example describes the initial steps which
one might take in axiomatizing a mathematical theory.

EXAMPLES
7.1. Suppose that a practitioner of the axiomatic method were to set out to

reconstruct the set theory of Chapter 1 as an axiomatic theory. After analyzing
how that subject matter was developed, he might conclude that all concepts
stemmed from the membership relation --that is, the 2-place predicate "is a
member of." This might motivate the practitioner to set up a system of the type
introduced above, one having a single predicate letter C(x, y) intended to
denote the membership relation. Of course, the intended interpretation of
individual variables would be as sets. The prime formulas of the system would
consist of all expressions of the form C(x, y) or, using more suggestive notation,
x C y. Then, for convenience, further predicates could be introduced by defini-
tion. Following are some instances:

xtZyfor -,(xCy),
xcyfor (a)(aCx-aCy),
x= y for (x _C y) A (y c x),
x0yfor -i(x=y),
xCyfor(x9y)A(xg-y).

The next step would be the adoption of certain formulas as axioms.
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7.2. As every high school student knows, the basic ingredients of elementary
geometry are "points," "lines," and the relation of incidence, " lies on

_." In formulating an axiomatic theory intended to have intuitive geom-
etry as an interpretation, one might choose as primitive terms a list of individual
variables (intended to range over points and lines), two 1-place predicate letters,
P(x) and L(x), and one 2-place predicate letter, I(x, y). These might be read,
in turn, "x is a point," "x is a line," and "x is on y." Among the axioms might
appear the following:

(3x)P(x), (3x)L (x),
(x) (y) (AX, y) <- -' I(.y, X)),
(x)(P(x) -, (3y)(L(y) A I(x, y)))

7.3. As the first step in axiomatizing the theory of partially ordered sets as
described in Chapter 1, one might introduce as the primitive terms a list of
individual variables and two 2-place predicate letters, = (x, y) and < (x, y).
Then the prime formulas would consist of all expressions of the form x = y and
x < y, using more familiar notation. As nonlogical axioms for the theory (that
is, those axioms which serve as a basis for the intended mathematical structure),
we might then take

(x) (x = x), (x) (y) (x = y - y = x), (x) (y) (z) (x = y A y = z x = z)
(which mean that = is an equivalence relation),

(x) (y) (z) (x = y A x < z --b y < z), (x) (y) (z) (x = y A z < x -- z < y)

(which assert that "equals may be substituted for equals"), and, finally,

(x) -, (x < x), (x) (y) (z) (x < y A y < z - x < z)

(which establishes < as an ordering relation).

As part of the formulation of the predicate calculus there must be
introduced definitions for distinguishing between the circumstances in
which a variable is intended to play the role of a variable or an un-
known in the intuitive sense. As a preliminary to this we define the
scope of a quantifier occurring in a formula as the formula to which
the quantifier applies. A possible ambiguity is removed by use of pa-
rentheses. Below are several examples illustrating the scope of the
quantifier "(x)," in which the scope is indicated by the line underneath:

(x) P(x) A Q (x),

(3y) (x) (P(x, y) (z) Q (z) ),

(x) (y) (P(x, y) A Q(y, z)) A (3x)P(x, y),
(x)(P(x) A (3x)Q(x,z) -* (3y)R(x,y)) v Q(x,y)
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It is now possible to give the key definitions in connection with the
matter at hand. An occurrence of a variable in a formula is bound if
this occurrence is within the scope of a quantifier employing that
variable or is the explicit occurrence in that quantifier. An occurrence
of a variable is free ill this occurrence of the variable is not bound.
For example, in

(x)P(x, y)

both occurrences of x are bound, and the single occurrence of y is free.
Again, in the formula

(3y) (x) (P(x, y) -* (z) Q W)

each occurrence of every variable is bound. A variable is free in a
formula if at least one occurrence of it is free, and a variable is bound
in a formula if at least one occurrence of it is bound. A variable may
be both free and bound in a formula. This is true of z in the formula

(z)(P(z) A (3x) Q(x, z) -a (3y) R(z, y)) V Q(z, x).

If a variable is free in a formula, then, on an assignment of meaning
to the predicates involved, that variable behaves as an unknown in the
familiar sense, since the formula becomes a statement about that var-
iable. The formulas x < 7 and (3y)(y < x), in each of which x is free,
serve to illustrate this point. The formula

(3y) (y < x) A (x) (x > 0),

wherein the first occurrence of x is free and the other two are bound,
illustrates the remark that insofar as meaning is concerned, the free
and bound occurrences of the same variable in the same formula have
nothing to do with each other. Indeed, the formula (x) (x > 0) is
simply a statement and has the same meaning as (u)(u > 0) and
(W) (W > 0).

In bound occurrences in a formula a variable behaves like a variable
in the intuitive sense. For example, in

(x) (x 2 - 1 = (x - 1)(X + 1) )

all occurrences of x are bound and, clearly, x serves as a variable.
That x in the formula

(3x) (y ; x)
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serves as a variable is made more plausible on recalling that this formula
has the same meaning as

(x) --I (Y 7,!5 X) -

In conclusion, we note that it is now possible to give a precise defi-
nition of the word "statement." A statement is a formula which has
no free variables.

EXERCISES
7.1. List the bound and the free occurrences of each variable in each of the

following formulas.

(a) (x)P(x). (d) (3x)A(x) A 11(x).
(b) (x)P(x) --' P(J') (e) (3x)(y)(P(x) A Q(y)) --> (x)R(x).
(c) P(x) - (3x)Q(x) (f) (3x)(3y)(1'(x, y) A Q(z)).
7.2. Using the letters indicated for predicates, and whatever symbols of arith-

metic (for example, "+" and "<") may be needed, translate the following.

(a) If the product of a finite number of factors is equal to zero, then at least
one of the factors is equal to zero. (Px for "x is a product of a finite num-
ber of factors," and Fxy for "x is a factor of y.")

(b) Every common divisor of a and b divides their greatest common divisor.
(Fxy for "x is a factor of y," and Gxyz for "z is the greatest common divisor
of x and y.")

(c) For each real number x there is a larger real number y. (Rx)
(d) There exist real numbers x, y, and z such that the sum of x and y is greater

than the product of x and z.
(c) For every real number x there exists a y such that for every z, if the sum

of z and 1 is less than y, then the sum of x and 2 is less than 4.

7.3. An abelian group may be defined as a (noncmpty) set A together with
a binary operation -l- in A which is associative, commutative, and such that for
given x and y in A the equation x -l- z = y always possesses a solution z in A. A
familiar example is that of L_ with ordinary addition as the operation.

A formulation within the predicate calculus can he given by taking as primi-
tive terms a list of variables, a 2-place predicate letter (x, y), and a 3-place
predicate letter S(x, y, z). The prime formula x = y is read "x equals y," and
the prime formula S(x, y, z) is read "z is the sum of x and y." As axioms we take
th.e following formulas.

(x)(x = x)-

(x) (y) (x = y --> y = X).
(x) ()) (z) (x = y A y = z - x = z). .
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(u) (v) (w) (x) (y) (z) (S(u, v, w) A u = x A y = v A w = z -+ S(x, y, z) ).

(x) (y) (3z)S(x, y, z)
(x) (y) (z) (w) (S(x, y, z) A S(x, y, w) - + z = w) .
(u) (v) (w) (x) (y) (z) (S(u, v, w) A S(w, x, y) A S(v, x, z) --3 S(u, z, y)).

(x) (y) (z) (S(x, y, z) --, S(.Y, x, z))
(x) (y) (3z)S(x, z, y)

Write a paragraph in support of the contention that, collectively, these
axioms do serve to define abelian groups.

8. The Predicate Calculus. Validity

The system described in the preceding section is essentially the com-
mon starting point in the formulation of various predicate calculi.
Distinguishing features of the classical predicate calculus (which is our
concern) include further assumptions which extend the one assumption
made in Section 3 for the statement calculus, namely, that with each
prime formula there is associated exactly one of T and F. The corres-
ponding assumption about a prime formula in the sense of the predicate
calculus is much more complicated. We shall introduce it in several
steps. First, it is assumed that with the system described in the pre-
ceding section there is associated a nonempty set D, called the domain,
such that each individual variable ranges over D. Further, it is assumed
that with each n-place predicate letter there is associated a logical
function, that is, a function on D" into IT, F}. (For 0-place predicates
the associated function is assumed to be a constant, one of T or F.)
Finally, it is assumed that a truth-value assignment to a prime formula
P(yt, y23 , y") can be made, relative to an assignment of an element
in D to each distinct variable among yl, y2, , y", in the following way.
If toy; is assigned d; in D and if to the predicate letter P(xt, x2, ,
is assigned X: D" --*- IT, F }, then the truth value of 1'(yt, y2, , is
A(dt, r12, , d"). For example, if P(x, y, x) is the prime formula and X
is assigned to P(x, y, z), then the truth value of P(x, y, x), relative to the
assignment of a to x and b toy, is A(a, b, a).

For the theory of the statement calculus, that one of T and F which
is assigned to a prime formula is assumed to be irrelevant. In the predi-
cate calculus this is extended to the assumption that the theory is
independent of the domain D and the assignment of functions to pred-
icate letters.
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The foregoing is the basis of the valuation procedure for a formula
C of the predicate calculus. For this it is assumed that (i) a domain D
is given, (ii) a function is assigned to each predicate letter appearing
in C, and (iii) to each distinct free variable in C is assigned a value in
D. Collectively, these constitute an assignment to C. A truth value is
assigned to C by a procedure which parallels the formation of C.

(I) If P(y1j Y2, , yn) is a prime formula in C and A is assigned to
P(x1, x2, , xn) and d= is assigned to ys, then the truth value of
P(Y1,Y2, ...,yn) is X(d1, d2, ..., dn).

(II) For a given assignment of values to the predicate letters and
free variables of --,A, the value of --,A is F if the value of A is T,
and the value of -, A is T if the value of A is F. Similarly, for a
given assignment of values to the predicate letters and free
variables of A V B, A A B, A --+ B, and A <--, B, the truth
tables from the statement calculus apply.

(III) For a given assignment of values to the predicate letters and
free variables of (x)A, the value of (x)A is T if the value of A
is T for every assignment to x, and the value of (x)A is F if the
value of A is F for at least one assignment to x. For'a given
assignment of values to the predicate letters and free variables
of (3x)A, the value of (3x)A is T if the value of A is T for at least
one value of x, and otherwise it is F.

As an illustration, we consider the problem of the assignment of
truth values to the formula

(x) (P(x) --+ Q) V (Q A P(Y))
Although the domain D is fixed, it is unknown. Suppose D = {a, b}.
By assumption there is associated with P(x) a logical function on D
into IT, F} and with Q a truth value. Further, the free variable y may
assume any value in D. The possible logical functions which may be
associated with P(x) are tabulated( here:

x I X1(x) X2(x) A3(x) X4(x)

a T T F F

b T F T F

The possible values which may be associated with Q are T and F, and
to y may be assigned the value a or b. Thus, we may fill out a table
with 16(= 4 2 2) entries exhibiting the truth-value assignment in all
possible cases:



4.
8 1 T
he

Pr
ed

ic
at

e

C
al

cu
lu

s.

V
al

id
ity

20
7

P
(x

)

Q y

A
i
(
x
) T a

X
j
(
x
) T b

X
,
(
x
) F a

a
r
(
x
) F b

A
2
(
x
) T a

X
2
(
x
) T 6

X
2
(
x
) F a

X
2
(
x
) F b

X
3
(
x
) T a

X
3
(
x
) T b

X
3
(
x
) F a

X
3
(
x
) F 6

X 4(
x) T a

X
4
(
x
) T b

)f
i(x

) F a

X
4
(
x
) F b

T T

T T

F F

F F

T T

T F

F F

F F

T F

T T

F F

F F

T F

T F

T F

T F

T
he

en
tr

ie
s

ap
pe

ar
in

g

un
de

r

P(
x)

,

Q
,

an
d y in a fi

xe
d

ro
w

m
ak

e

ri
p

an as
si

gn
m

en
t

to th
e

fo
rm

ul
a

un
de

r

co
ns

id
er

at
io

n.

T
he

de
ta

ils

of th
e

co
m

pu
ta

tio
n

ac
co

m
pa

ny
in

g

th
e

as
si

gn
m

en
t

gi
ve

n

in th
e

ni
nt

h

ro
w of

th
e

ta
bl

e

ar
e as fo

llo
w

s.

Fi
rs

t

w
e

su
bs

tit
ut

e

th
e

as
si

gn
m

en
ts

in
to

th
e

fo
rm

ul
a

to ob
ta

in

(
x
)
(
X
3
(
x
)

-
+ T
) V (
T A A
3

(
a
)
)
.

In or
de

r

to ev
al

ua
te

(x
)(

X
3(

x)

--
p T
)

w
e

m
us

t

co
m

pu
te

X
3(

x)

--
' T as a

lo
gi

ca
l

fu
nc

tio
n

of x. T
he

ta
bl

e

fo
r

th
is is

x
a

b

a3
(x

) - T

F T
T

T T
T

Si
nc

e

th
e

va
lu

e

of th
e

co
nd

iti
on

al

is T fo
r

al
l

as
si

gn
m

en
ts

to x in D
,

(x
)(

X
3(

x)

--
+

T
)

is ev
al

ua
te

d

as T
.

Si
nc

e

X
3(

a)

= F, th
e

va
lu

e

of T A ^3
(a

)

is F. Fi
na

lly
,

by th
e

ta
bl

e

fo
r

V
,

th
e

va
lu

e

of th
e

en
tir

e

fo
rm

ul
a

is T
.

W
e

su
m

m
ar

iz
e

th
es

e

st
ep

s in ta
bu

la
r

fo
rm :

(x
)(

P
(x

)

--
j

Q
) V (Q A P

(y
))

(x
)(

X

(x
)

--
* T
) V (T A X

3(
a)

)

T v(
T

A
F

)

F

(x
)(

P
(x

)

-> Q
) V (Q A P

(y
))

T

O
ur

de
sc

ri
pt

io
n

of th
e

pr
ed

ic
at

e

ca
lc

ul
us is in

te
nd

ed

to pa
ra

lle
l

th
at

of th
e

st
at

em
en

t

ca
lc

ul
us

be
gi

nn
in

g

w
ith

Se
ct

io
n

3. So fa
r,

fo
r

th
e



208 Logic I CHAP. 4

predicate calculus, we have introduced the symbols to be employed,
given the definition of a formula, and described a valuation procedure.
We imitate the next step in the earlier theory by defining validity in
the predicate calculus. A formula is valid in a given domain iff it
takes the value T for every assignment to the predicate letters and free
variables in it. A formula is valid if it is valid in every domain. For
"A is valid" we shall write

K A.

It is appropriate to use the same terminology and symbolism as before,
since this definition of validity is an extension of the earlier one. It is
obvious that to establish the validity of a formula, truth tables must
give way to reasoning processes. On the other hand, to establish non-
validity, just one D and one assignment based on this domain will suf-
fice. For example, the fourth line of the above table demonstrates
that the formula considered there is not valid. The case with which
the validity of some formulas can be established may come as a surprise.

EXAMPLES
8.1. Let us illustrate the assignment of functions to predicate letters in an

application of the predicate calculus. Suppose that L is the domain and that
we are told that 1'(x, y, z) is to be interpreted as "z is the sum of x and y." Then
to this predicate letter we would assign the function X: Z' ->- IT, F} such that
X (a, b, c) = T if a + b = c, and X (a, b, c) = F otherwise. If, on the other hand,
we are told that P(x, y, z) is to be interpreted as "z is the product of x and y,"
then we would define X(a, b, c) to be T if ab = c, and to be F otherwise.

8.2. We prove that
l= (x)P(x) --> P(y).

A prerequisite for the formula to take the value F is that. P(y) receive the value
F for some assignment in some domain. But in that event, (x)1'(x) receives the
value F. Hence, (x)P(x) -+ P(y) always receives the value T.

8.3. Let us prove that
K P(y) - (3x)P(x).

As in the preceding example, we need concern ourselves only with assignments
in some domain D such that (3x)P(x) takes value F. This is the case if P(x)
receives value F as x ranges over D. But then P(y) must receive the value F.

8.4. Let us establish the nonvaliclity of the formula (3x)P(x) -* (x)P(x). Let
D contain at least two individuals, a and b. Assign to P(x) a logical function A
such that X(a) = T and ,\(b) = F. Then (3x)P(x) receives the value T and (x)P(x)
receives the value F. Hence, the entire formula receives the value F.

8.5. A proof that
(x)P(x) V (x)Q(x) -' (x)(P(x) V Q(x))
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may be given as follows. Suppose that the consequent takes the value F for an
assignment A1, A2, and a to P(x), Q(x), and x, respectively. Then, for this assign-
ment, P(x) V Q(x) takes the value F. Hence, Ai(a) = F and A2(a) = F, from
which it follows that (x)P(x) and (x)Q(x), and hence their disjunction, each
take the value F.

We turn now to the question of general methods for proving validity,
looking first at what we can take over from the statement calculus.
Theorem 3.2 (with "A eq B" now assigned a meaning in terms of our
present valuation procedure) and Theorem 3.3 carry over unchanged.
The proofs employ essentially the earlier reasoning. The substance of
Theorem 3.1 is the possibility of proving validity of a formula without
dissecting it into prime components. This same technique has applica-
tions in the predicate calculus. To proceed with our first illustration,
let us call a formula of the predicate calculus prime for the statement
calculus if no sentential connectives appear in it. In terms of the
composition of a formula from such prime formulas we can introduce
the notion of tautology into the predicate calculus. For example,
P(x) -4 P(x) is a tautology, and we may recognize tautologies (for
example, A --+ A) even when the prime formulas are not displayed.
Clearly, a tautology is a valid formula. In particular, Theorem 3.4
holds for the predicate calculus.

In order to illustrate further the technique under discussion some
definitions are required. To substitute a variable y for a variable x in a
formula A means to replace each free occurrence of x in A by an oc-
currence of y. If y is to be substituted for x in A, it is convenient to
introduce a composite notation such as "A(x)" for the substituend and
then write "A(y)" for the result of the substitution. Such notation as
"A(x)" for the formula A is used solely to show the dependence of A
on x and is not to be confused with the notation for predicate letters;
indeed, we do not require that x actually occur free in A and do not
exclude the possibility that A(x) may contain free variables other than
x. In the future we shall often use such notations as "A(x)" or "A(x, y)"
instead of "A" when we are interested in the dependence of A on a
variable x or variables x and y, whether or not we plan to make a sub-
stitution. Let us consider an example. If A(x) is

(1) (x = 1) A (3y) (y $ x),
then, clearly, A(y) says something different about y than A(x) says
about x. The reason is that the occurrence of x in (3y) (y x) is free,
whereas an occurrence of y in the same position is bound. In everyday
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mathematics we are not likely to make a substitution which changes
the meaning of a formula. A safeguard against inappropriate substitu-
tions in purely formal situations can be given. A formula A(x) is free
for y if no free occurrence of x in A(x) is in the scope of a quantifier (y)
or (3y). For example, if A(x) is P(x, Y) A (y)Q(y), then it is free for y,
whereas if A(x) is (1), above, then it is not free for y. If substitutions
for x in A(x) are restricted to variables y such that A(x) is free for y,
difficulties of the sort mentioned are avoided.

We turn now to Example 8.3, where we proved that K P(y) -,
(3x)P(x) for a predicate letter P(x). Using the same reasoning we can
prove that 1= A(y) --> (3x)A(x), where A(x) is any formula which is free
for y. The computation of the value of the formula at hand for a given
assignment consists of (i) the computation of a value of the logical
function assigned to A, and (ii) the computation of the value of the
formula. The second step will coincide with that by which the value of
P(y) -, (3x)P(x) is computed for some assignment; this, as we have
seen, is always T. In general, although a formula A may contain several
prime formulas, we may consider A as a prime formula and speak of
"the logical function assigned to A." We state the result just derived
along with a companion valid formula as our next theorem.

THEOREM 8.1. Let A (x) be a formula which is free for y. Then

(I) 1= (x)A(x) --+ A(y).
(II) A(y) -> (3x)A(x).

COROLLARY. If (x)A(x), then A(x).

Proof. We apply (I) of the theorem, taking x as the y to obtain
(x)A(x) - A(x). Now assume that (x)A(x). Then we may con-

clude that K A(x) by the extension of Theorem 3.3 mentioned above.

'r I-1 E O R E M 8.2. Let x be any variable, B be any formula not
containing any free occurrence of x, and A(x) be any formula. Then

(1) If I-- B -* A(x), then 1= B -> (x)A(x).
(II) if r- A(x) - B, then l (3x)A(x) -> B.

Proof. To prove (I), we assume that K f3 -. A(x). Let. D be any
domain and for this domain consider any assignment a to the formula
B-+ (x)A(x). Note that since x does not occur free in either B or
(x)A(x), a does not include an assignment of a value in D to x. For a,
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B takes either the value F or T. If B takes the value F, then B -* (x)A(x)
takes the value T. If B takes the value T, then this is still the case
when a is extended to include any assignment of a value in D to x.
Hence, for a so extended, A(x) receives the value T, since, by assump-
tion, B --+ A(x) has value T. That is, for each assignment to x along
with the given assignment a, A(x) receives the value T. It follows
that t-- B --* (x)A(x).

The proof of (11) is similar and is left as an exercise.

COROLLARY. If t= A(x), then 1= (x)A(x).

Proof. Assume that l= A(x). Since J= B ---, (C -* B), if P is any
0-place predicate letter, then 1= A(x) --+ (P V -, P --* A(x)). hence,
K P V -,P --- A(x) by Theorem 3.3. By (1) of the above theorem,
it follows that r. P V --1 P -+ (x)A(x). Finally, since P V --j P, an-
other application of Theorem 3.3 gives K (x)A(x).

An illustration in familiar terms of the above corollary is this. A
proof of "For all real numbers x, sine x + cos" x = 1" begins by re-
garding x as some unknown (but fixed) real number. After proving
that, for this x, Sine X + COS2 X = 1, it is argued that since x is any real
number, the assertion follows. Note that this involves the transition
from the consideration of x as a free variable to that of a bound variable.

When we initially raised the questions of what methods for proving
validity in the statement calculus carry over to the predicate calculus,
we ignored the possibility of a direct generalization of Theorem 3.1. It
has generalizations to the predicate calculus, but they are complicated
because of the necessity of the avoidance of binding, in a way which
is not intended, of free variables by quantifiers which may be present.
In order to present one theorem of this type, we must describe the
mechanics of substituting in a formula for all occurrences of prime
formulas resulting front a particular predicate letter. We begin with
an illustration. In the formula (x)P(.r) -. P (y) there are two occurrences
of prime formulas resulting from the predicate letter P(w). By the
result of substituting a formula A(zu) for the predicate letter P(w) in
(x)P(x) --* P(y) we shall mean the result of replacing P(x) by A(x) and
P(y) by A(y). For instance, if we take A(w) to be (3z)Q(w, z), then the
result of the substitution is

(2) (x)(3z)Q(x, z) --- (3z)Q(y, z),
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and if we take A(w) to be (3y)Q(w, y), then the result of the substitu-
tion is
(3) (x) (3y) Q (x, y) -> (3y) Q (y, y)

There is a basic difference between results (2) and (3). Namely, the
free y in P(y) remains free in (2) but in (3) it becomes bound by the
quantifier (3y) of our second choice for A(w). The effect of binding y
in (3) is disastrous as may be seen by considering, for instance, the inter-
pretation of (3) which results on choosing Z as the domain and Q(x, y)
as x < Y. Such mixups in the way the variables are bound after a sub-
stitution can be avoided by observing two restrictions. To formulate the
substitution process and these restrictions in general, let us suppose the
substitution is of the formula A(wi, W2, -, wk) for the predicate letter
P(wI, w2, , ZOO in a formula B not containing any one of wI, w2i

, wk. The substitution with result B* is effected by replacing each
part of B of the form P(rI, r2, - - , rk) by A(r1, r2, , rk), where
A(r,, r2, . , rk) is the result of substituting rI, r2j - , rk for wI, w2, , wk
in A(wj, w2, , Wk). The substitution is called admissible iff' none of
the variables in B occur bound in A(w1, w2, , wk) and none of the
free variables in A(wI, w2, - , wk) occur bound in B. The generaliza-
tion of Theorem 3.1 which we have in mind can then be stated as
follows (the proof is omitted).

THEOREM 8.3. Let B be a formula containing a prime formula
resulting from the predicate letter P(wI, IV2, - , Wk) and let B* be
the formula resulting from B by an admissible substitution of the
formula A(w,, w2, - - , rvk) for P(wI, w2, . , wk). If 1= B, then K B*.

Although this theorem is not the most general of its kind, it serves
to reduce the proof of the validity of each of the formulas in the next
theorem to the case of prime formulas in place of arbitrary formulas.
Since the formulas of Theorem 3.4 extend to the predicate calculus, we
continue the numbering used there to emphasize that we arc introducing
additional valid formulas for the predicate calculus.

THEOREM 8.4. Let x and y be distinct variables, A(x), B(x), and
A(x, y) be any formulas, and A be any formula not containing any
free occurrences of x. Then

33. t (3x) (3y)A(x, y) E-> (3y) (3x)A(x, y)
33'. i (x)(y)A(x,y) -- (y)(x)A(x,y').
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34. 1= (3x)A(x) E-> -, (x) -, A(x).
34'. 1 (x)A(x) F-4 -, (3x) -,A(x).

35. -, (3x)A(x) H (x) -,A(x).
35'. 1= -i (x)A(x) - (3x) -, A(x).

36. K (3x)(y)A(x,y)--. (y)(3x)A(x,y)
37. (3x)(A(x) V B(x)) H (3x)A(x) V (3x)B(x).

213

37'. G (x)(A(x) A B(x)) <-+ (x)A(x) A (x)B(x).
38. K (x)A(x) V (x)B(x) -' (x)(A(x) V B(x)).

38'. (3x)(A(x) A B(x)) - (3x)A(x) A (3x)13(x).
39. K (3x) (A V B(x)) E-> A V (3x) B(x).

39'. K (x)(A A B(x)) A A (x)B(x).
40. K (x)(A V B(x)) --' A V (x)B(x).

40'. I_ (3x)(A A B(x)) H A A (3x)B(x).

The proofs of the validity of these formulas are left as exercises. That
some of the formulas are valid should be highly plausible on the basis
of meaning; formulas 33 and 33', which mean that existential (or
universal) quantifiers can be interchanged at will, are in this category.
Again, formulas 34 and 34', which describe how an existential quan-
tifier can be expressed in terms of a universal quantifier and vice versa,
were discussed in the preceding section. Formulas 35 and 35' provide
rules for transferring -, across quantifiers. Formulas 37, 37', 38, and
38' are concerned with transferring quantifiers across V and A in
general, and formulas 39, 39', 40, and 40' treat special cases of such
transfers.

EXAMPLES
8.6. We consider some practical illustrations of the use of formulas 35 and

35' in arithmetic. That is, we take as the domain D the set of natural numbers.
Further, let < and + have their familiar meanings; thus <(x, y) is a 2-place
predicate letter, and + (x, y, z) is a 3-place one. The (true) statement "There
does not exist a greatest natural number" may be symbolized by

(x)(3y)(x < y)-

Its negation,

-, (x) (3y) (x < y),

may be rewritten, using 35', as

(3x) -i ((3y) (x < y))
In turn, using 35, this may be rewritten as

(3x) (y) -, (x < y) or (ax)(Y)(x ? Y) -
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In English this last formula reads "There exists a greatest natural number."
The (false) statement "For every pair m, n of natural numbers there is a natural

number p such that m + p = n" may be symbolized by

(m)(n)(3p)(m + p = n).
Its negation may be transformed into

(3m) (3n) (p) (m +p n).

The reader can translate this into acceptable English.
8.7. Take for D the set R of real numbers. The definition of continuity of a

function J at a, namely, "J is continuous at a iff for every e > 0 there exists a
5 > 0 such that for all x, if Ix - al < 5, then If (x) - f(a)l < e" can be trans-
lated into the symbolic form

(E) (E > 0 -. ((36) (6 > 0 A (x)(Ix - al < S If(x) - 1(a)I < e))))
This can be shortened considerably using the notion of restricted quantifica-
tion, which in practical terms amounts to restricting the range of a and S to the
set R 1. Then the above may be contracted to

(E)(35)(x)(Ix - aI < S --: 11(x) - J(a)I < e).

With mild restrictions, the valid formulas of Theorem 8.4 remain valid when
some quantifiers are restricted. This makes it possible, for example, to obtain
the negation of complicated formulas quickly and in greatly abbreviated form.
As an illustration, the reader is asked to form the negation of the original for-
mula above and show that, in terms of restricted quantifiers', it reduces to the
negation of the abbreviation of the original formula, which is

(3E)(5)(3x)(Ix - al < S A 11(x) - 1(a)I > e).

EXERCISES
8.1. For a domain of two elements, construct a truth table for the formula

(x)(P V Q(x)) *-> P V (x)Q(x).
8.2. Prove that the formula in Example 8.4 is valid in a domain consisting

of one element.
8.3. Establish the validity of formulas 34, 35, and 36 in Theorem 8.4, regard-

ing all constituent formulas as primes.
8.4. Establish the validity of formulas 37, 38, and 39 in Theorem 8.4, regard-

ing all constituent formulas as prunes.
8.5. Supply an example to show that the converse of formula 36 in Theorem

8.4 is nonvalid.
8.6. Prove Theorem 8.2 (II).
8.7. As in Example 8.6, let us take for 19 the set of natural numbers. Using

Theorem 8.4, justify the equivalence of the left-hand and right-hand members
of each of the following pairs of formulas.
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(a) (3x)(y) -, (y > x), (3x) -i (3y)(y > x).

(b) (3x)(y)(y > x V -, (9 > 0)), (3x)(y)(y > 0 ->y > x).
(c) (x) (3y) (3z) (x < y A z2 > y), (x) (3y) (x < y A (3z) (z2 >y)).

8.8. Let a0, a,, , a,,, be a sequence of real numbers. Using restricted
quantification, translate into symbolic form

(a) the assertion that a is the limit of the sequence,
(b) the assertion that the sequence has a limit,
(c) the assertion that the sequence is a Cauchy sequence (that is, given e > 0

there exists a positive integer k such that if n, m > k, then Ia. - a,,,j < e).

8.9. Write the negation of each of the formulas obtained in the preceding
exercise.

8.10. With R as domain, translate each of the following statements into sym-
bolic form, write the negation of each (transferring -I past the quantifiers), and
translate each resulting formula into English.

(a) For x, y C R and z E R+, xz = yz implies x = Y.
(b) The number a is the least upper bound of A R.
(c) The set A has a greatest element.

9. The Predicate Calculus. Consequence

The concept of consequence for the predicate calculus is an extension
of that for the statement calculus as given in Section 4. In this exten-
sion, statement letters give way to predicate letters, and assignments
of truth values give way to the more elaborate assignments of the pred-
icate calculus. In addition, a further ingredient appears for the first
time: the possibility that an assumption forrmrla contains a free occur-
rence of a variable. For example, in a theorem in an assurnp-
tion may have the form "Let x be an integer greater than 0" or "Sup-
pose that x is divisible by 3." An examination of how such an x is
"treated" in a proof' reveals that it is regarded as a constant; that is,
it is regarded as a name of one and the same object throughout the
proof. Outside of the context of the proof, however, it is it variable.
(For exam ple, having proved some result concerning an x which is
divisible by 3, one feels free to apply it to all such numbers.) The
reader is familiar with. such names as "parameter" and "arbitrary
constant" for symbols employed in this way.

This brings its to our basic definition. The formula 13 is a consequence
of formulas A,, A2, , A. (in the predicate calculus), symbolized by

A,, A2, ---,A,,,K B,
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if for each domain D and for each assignment to the A's in D the
formula 13 receives the value T whenever each A receives the value T.
Further, if a variable x occurs free in any A, then in each assignment
to the A's one chooses for all free occurrences of x one and the same
value in D; that is, in making an assignment to the A's, such an x is
regarded as a constant.

The statement and proof of Theorem 4.1 and its Corollary carry
over unchanged to the present case. Thus, these results are available.
In particular, to conclude that A1, A2, , A. B, it is sufficient to
prove that K A, A A,. A . . A A. -p B. Since Theorem 4.2 likewise
extends to the predicate calculus, it is possible to give a demonstration
that a formula B is a consequence of A1, A2, , A. in the form of a
finite sequence of steps, the last of which is B. In addition to the two
basic rules p and 1, which in the statement calculus serve to justify the
appearance of a formula E in a demonstration, we may introduce
others for the predicate calculus. The most fundamental of these are
the following two.

Rule (of universal specification) us: There is a formula (x)A(x) pre-
ceding E such that E is A(y), the result of substituting y for x in A(x),
such substitutions being restricted by the requirement that none of
the resulting occurrences of y is bound.

Rule (of universal generalization) ug: E is of the form (x)A(x) where
A(x) is a preceding formula such that x is not a variable having a free
occurrence in any premise.

The state of affairs regarding a demonstration of consequence in the
predicate calculus is then this. We contend that A,, A2, , Am K B if
we can devise a string

E1,E2j...,Er(=13)
of formulas such that the presence of each E can be accounted for on
the basis of one of the rules p, 1, us, or ug. Indeed, as in Section 4, it is
possible to prove that if the presence of each E can be so justified, then

A1, A2, , (any E in the sequence).

The earlier proof carries over (using the extended form of Theorem 4.2)
to dispose of the case where the presence of an E is justified by either
rule p or rule 1. The cases which involve rule us or Kg are dispatched
using Theorem 8.1(1) and Theorem 8.2(I). The details are left as an
exercise. ,

We are now in a position to construct formal derivations of simple
arguments in the style developed in Section 4.



4.9 I The Predicate Calculus. Consequence 217

EXAMPLES
9.1. Consider the following argument.

No human beings are quadrupeds. All women are human beings.
Therefore, no women are quadrupeds.

Using the methods of translation' of Section 6, we symbolize this as follows.

(x) (Hx -+ --i Qx)
(x) (Wx --> Hx)

(x) (Wx -* -, Qx)

The derivation proceeds as follows.

{1} (1) (x) (Hx --> -, Qx) p
{2} (2) (x) (Wx - a Hx) p
{2} (3) Wy --> Hy 2 us

{1} (4) Hy -' -' Qy I us

{l, 2} (5) Wy -' Qy 3,4t
{1, 2} (6) (x) (Wx -a Qx) 5 ug

9.2. The following argument is more involved.

Everyone who buys a ticket receives a prize. Therefore, if there
are no prizes, then nobody buys a ticket.

if Bxy is "x buys y," Tx is "x is a ticket," Px is "x is a prize," and Rxy is "x
receives y," then the hypothesis and conclusion may be symbolized as follows.

(x)((3y)(Bxy A Ty) - (y)(Py A Rxy))
-i (3x)Px -+ (x) (y) (Bxy --> -, Ty)

Since the conclusion is a conditional, we employ the rule cp in the derivation
below. The deduction of line 3 from line 2, that of line 7 from line 6, and that
of line 11 from 10 should be studied and justified by the reader.

{1} (1) (x)((3y)(Bxy A Ty) --' (3y)(Py A Rxy)) p
{2} (2) -, (3x)Px p
{2} (3) (x) -1 Px 2 t
{2} (4) -, Py 3 us
{2} (5) -, Py V Rxy 4 t
{2} (6) (y) (-, Py V -,Rxy) 5 ug
{2} (7) -,Gy)(Py A Rxy) 6t
{l} (8) (3y) (Bxy A Ty) --> (yy)(Py A Rxy) I us

11,2) (9) -, (3y) (Bxy A Ty) 7, 8 t
11,21 (10) (y)(-,Bxy V -,Ty) 9 t
11,2) (11) (y)(Bxy --> -, Ty) lot
{l, 2} (12) (x)(y)(Bxy -> Ty) hug

{1} (13) -, (3x)Px -4 (x) (y) (Bxy --, Ty) 2, 12 cp
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9.3. Once the reader has subscribed to the soundness of the derivation in the
preceding example, he has, in effect, endorsed further rules of inference which
serve to expedite derivations. We introduce two further derived rules of in-
ference which render the same service. These are formal analogues of two
familiar everyday occurrences in mathematics. If one is assured that "(3x)A(x)"
is true, one feels at liberty to "choose" ay such that A(y). Then y is an unknown
fixed quantity such that A(y). Conversely, given that there is some y such that A(y),
one does not hesitate to infer that "(3x)A(x)" is true. In the predicate calculus
the rule which permits the passage from (3x)A(x) to A(y) is called the rule (of
existential specification) es. The rule which permits the passage from A(y) to
(3x)A(x) is called the rule (of existential generalization) eg. These are the ana-
logues for existential quantifiers of the rules us and ug for universal quantifiers.
We shall not validate these rules nor even discuss the restrictions which must
be observed in using them. In the following simple example illustrating them
we employ a lower-case Greek letter to designate an object which is involved
in the "act of choice" accompanying an instance of the rule es.

Every member of the committee is wealthy and a Republican.
Some committee members are old. Therefore, there are some old
Republicans.

{1} (1) (x) (Cx -, Wx A Rx) p
{2} (2) (3x) (Cx A Ox) p
{2} (3) Ca A Oa 2 es

{1} (4) Ca - Wa A Ra 1 us

{2} (5) Ca 3t

{1, 2} (6) Wa A Ra 4, 5t
{2} (7) Oa 3t

{1, 2} (8) Rot 61

{1, 2) (9) Oa A Ra 7, 8 t
(1, 2} (10) (3x)(Ox A Rx) 9 eg

9.4. The derivation corresponding to the following argument employs all of
the rules which we have described.

Some Republicans like all Democrats. No Republican likes any
Socialist. Therefore, no Democrat is a Socialist.

The reason for the introduction of "x" in line 3 below is this. By virtue of the
form of the conclusion, (x)(Dx -> -,Sx), a conditional proof is given. Thus, Dx
is introduced as a premise in line 3. Since x occurs free here, we note its presence
(as well as in subsequent lines which depend on this premise) to assist in avoid-
ing any abuse of rule ug.
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{1} (1) (3x)(Rx A (y)(Dy - Lxy)) p
{2} (2) (x) (Rx -+ (y) (Sy -> -, Lxy)) p
{3} (3) Dx x, p
(1) (4) Ra A (y)(Dy - Lay) 1 es

{1} (5) (y)(Dy -> Lay) 4 t
{1} (6) Dx -, Lax 5 us

{1, 31 (7) Lax x, 3, 6 t
{2} (8) Ra --> (y) (Sy --> -i Lay) 2 its

{l} (9) Ra 4 t
{1, 21 (10) (y)(Sy - -,Lay) 8, 9 t
{1,2} (I1) Sx --i --,Lax 10 us

{l, 2, 31 (12) -,sx x, 7, 11 t
{1,2} (13) Dx -> --,Sx 3,12cp
(1,21 (14) (x)(Dx -> --1Sx) 13 ug

The foregoing examples lend plausibility to the contention that the
predicate calculus is adequate for formalizing a wide variety of argu-
ments. Lest there be concern over the lengths of derivations of such
simple arguments as those considered, we assure the reader that an ex-
tended treatment would include the introduction of further derived
rules of inference to streamline derivations. The outcome is the concept
of an "informal proof." In mathematics this amounts to a derivation in
the conversational style to which one is accustomed: mention of rules
of inference and tautologies used is suppressed, and attention is drawn
only to the mathematical (that is, nonlogical) axioms and earlier theo-
rems employed. (Further details of this are supplied in the next chapter.)
The principal advantage accrues in having informal proofs as the evolu-
tion of formal derivations is this: One has a framework within which it
can be decided in an objective and mechanical way, in case of disagree-
ment, whether a purported proof is truly a proof.

EXERCISES
Construct a derivation corresponding to each of the following arguments.
9.1. No freshman likes any sophomore. All residents of Dascornh are sopho-

mores. Therefore, no freshman likes any resident of Dascomb. (Fx, LV, Sv, Dx)
9.2. Art is a boy who does not own a car. ,Jane likes only boys who own cars.

Therefore, ,Jane does not like Art. (Bx, Ox, Lxy, a, j)
9.3. No Republican or Democrat is a Socialist. Norman Thomas is a Socialist.

Therefore, he is not a Republican. (Rx, Dx, Sx, t)
9.4. Every rational number is a real number. There is a rational number.

Therefore, there is a real number.



220 Logic I CHHAP. 4

9.5. All rational numbers are real numbers. Some rationals are integers.
Therefore, some real numbers are integers. (Qx, Rx, Zx)

9.6. All freshmen date all sophomores. No freshman dates any junior. There
are freshmen. Therefore, no sophomore is a junior.

9.7. No pusher is an addict. Some addicts are people with a record. There-
fore, some people with a record are not pushers.

9.8. Sonle freshmen like all sophomores. No freshmen likes any junior. There-
fore, no sophomore is a junior. (Fx, Lxy, Sx, Jx)

9.9. Some persons admire Elvis. Some persons like no one who admires Elvis.
Therefore, some persons are not liked by all persons. (Px, Ex, Lxy)

BIBLIOGRAPHICAL NOTE
Extended treatments of symbolic logic, pitched at approximately the same

level as that of this chapter, appear in Copi (1954), Exncr and Rosskopf (1959),
Suppes (1957), and Tarski (1941). Formulations of both the statement calculus
and the first-order predicate calculus as axiomatic theories are given in Chap-
ter 9 of this book. The bibliographical notes for that chapter include references
to more comprehensive accounts of this subject matter.



CHAPTER 5 Informal Axiomatic

Mathematics

ONE OF THE striking aspects of twentieth century mathematical
research is the enormously increased role which the axiomatic approach
plays. The axiomatic method is certainly not new in mathematics,
having been employed by Euclid in his Elements. However, only in
relatively recent years has it been adopted in parts of mathematics
other than geometry. This has become possible because of a fuller
understanding of the nature of axioms and the axiomatization of logic.

The axiomatization (in the way we shall discuss it presently) of
various fragments of mathematics was the main subject of studies of the
foundations of mathematics, from the late 1880's until the 1920's. At
that time the present-day approach began to flourish. Distinctive fea-
tures of this modern approach include the explicit incorporation into
the set of axioms of a theory, those which provide for a "built-in"
theory of inference, and the concentration on the theory of models for
structures characterized by sets of axioms. Chapter 9 is devoted to an
introduction to this modern approach. The present chapter, when
judged relative to standards imposed by the present stage of investi-
gations of the foundations of mathematics, belongs to the past. But, we
repeat, it expounds the axiomatic method as it is used currently in
everyday mathematics.

1. The Concept of an Axiomatic Theory

The concept to be described is an outgrowth of the method used by
Euclid in his Elements to organize ancient Greek geometry. The plan of
this work is as follows. It begins with a list of definitions of such notions
as point and line; for example, a line is defined as length without
breadth. Next appear various statements, some of which are labeled
axioms and the others postulates. It appears that the axioms are intended
to be principles of reasoning which are valid in any science (for example,

221
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one axiom asserts that things equal to the same thing are equal to each
other) while the postulates are intended to be assertions about the
subject matter to be discussed-geometry (for example, one postulate
asserts that it shall be possible to draw a line joining any two distinct
points). From this starting point of definitions, axioms, and postulates,
Euclid proceeds to derive propositions (theorems) and at appropriate
places to introduce further definitions (for example, an obtuse angle is
defined as an angle which is greater than a right angle).

Several comments on Euclid's work are in order. It is clear that his
goal was to deduce all of the geometry known in his day as logical
consequences of certain unproved propositions. On the other hand, we
can only conjecture as to his attitude toward other facets of his point of
departure. From a modern viewpoint it may be said that he treated
point and line essentially as primitive or undefined notions, subject only to
the restrictions stated in the postulates, and that his definitions of these
notions offer merely an intuitive description which assists one in thinking
about formal properties of points and lines. I lowevcr, since the geometry
of that era was intended to have physical space as an interpretation, it
is highly plausible that Euclid assigned physical meaning to these no-
tions. Further evidence to support this conclusion is to be found in some
proofs where Euclid made assumptions that cannot be justified on the
basis of his primitive notions and postulates, yet which, on the basis of
the intended interpretation of his primitive notions, appear to be evi-
dent. If, indeed, Euclid was confused between formal or axiomatic
questions and problems concerning applications of geometry, then herein
lies the source of the only flaws in his work as judged by modern stand-
ards. Concerning the postulates, he probably believed them to be true
statements on the basis of the meaning suggested by his definitions of
the terms involved. Since proofs were not provided for the postulates,
they acquired the status of "self-evident truths." This attitude with
respect to the nature of postulates or axioms (now, incidentally, no
distinction is drawn between these two words) still persists in the minds
of many. Indeed, in current nonmathematical writings it is not uncom-
mon to see such phrases as "It is axiomatic that" and "It is a funda-
mental postulate of" used to mean that some statement is beyond all
logical opposition. Within mathematics this point of view with respect
to the nature of axioms has altered radically. The change was gradual
and it accompanied the full understanding of the discovery by J. Bolyai
and (independently) N. Lobachevsky of a non-Euclidean geometry. Let
us elaborate on this matter.
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In the traditional sense a non-Euclidean geometry is a geometry
whose formulation coincides with that of Euclidean geometry with the
one exception that Euclid's fifth postulate (the "parallel postulate") is
denied. The fifth postulate is "If two lines are cut by a third so as to
make the surn of the two interior angles on one side less than two right
angles, then the two lines, if produced, meet on that side on which the
interior angle sum is less than two right angles." An equivalent formu-
lation, in the sense that either, together with the remaining postulates,
implies the other, and one which is better suited for comparison purposes,
is "In a plane, if point A is not on the line 1, then there is exactly one
line on A parallel to 1." This is one of many axioms equivalent to the
parallel postulate which were obtained as by-products of unsuccessful
attempts to substantiate the belief that the parallel postulate could be
derived from Euclid's remaining axioms. Bolyai and Lobachevsky dis-
pelled this belief by developing a geometry in which the parallel postu-
late was replaced by the statement "In a plane, if the point A is not on
line 1, then there exists more than one line on A parallel to 1." Ap-
parently, the "truth" of this new geometry was initially in doubt. But
on the basis of measurements that Could be made in the portion of
physical space available, there appeared to be no measurable differences
between the predictions of the Bolyai-Lobachevsky geometry and those
of Euclidean geometry. Also, each geometry, when studied as a deductive
system, appeared to be consistent so far as riot yielding contradictory
statements. The ability to examine these geometries from the latter
point of view represented a great advance, for, in essence, it amounted
to the detachment of physical meaning from the primitive notions of
point, line, and so on.

A second advance in the attitude toward the axiomatic method ac-
companied the creation of various models in Euclidean geometry of the
Bolyai-Lobachevsky geometry. A typical example is the model proposed
in 1871 by helix Klein, for which he interpreted the primitive notions
of plane, point, and line, respectively, as the interior of a fixed circle in
the Euclidean plane, a Euclidean point inside this circle, and an open-
ended chord of this circle. If, in addition, distances and angles are
computed[ by formulas developed by A. Cayley, in 1859, then all axioms
of plane Bolyai-Lobachevsky geometry become true statements. The
immediate value of such an interpretation was to establish the relative
consistency (a concept which will be described in detail later) of the
Bolyai-Lobachevsky geometry. That is, if Euclidean geometry is a con-
sistent logical structure, then so is the Bolyai-Lobachevsky geometry.
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Of greater significance, so far as understanding the nature of axiomatic
theories, was the entertainment of the possibility of varying the meaning
of the primitive notions of an axiomatic theory while holding fixed its
deductive structure.

This evolution in the understanding of the nature of the axiomatic
method set the stage for the present-day concept of an axiomatic
theory. In its technical sense the word "theory" is applied to two sets
of statements, of which one is a distinguished subset of the other. The
entire set of statements defines the subject matter of the theory. In the
sciences, apart from mathematics, the members of the distinguished
subset arc those statements which are classified as true statements about
the real world, with experiment the ultimate basis for the classification.
In sharp contrast, it is a characteristic feature of an axiomatic theory
that the notion of truth plays no role whatsoever in the determination
of the distinguished subset. Instead, its members, which arc called
theorems or provable statements, are defined to be those statements of
the theory that can be deduced by logic alone from certain initially
chosen statements called axioms (or postulates). A precise definition of
theorem can. be given in terms of the notion of proof. A (formal) proof
is a finite column (Si, S2, - , Sk) of statements of the theory such that
each S either is an axiom or comes from one or more preceding S's
by the rules of inference of the system of logic employed. A theorem
or provable statement is a statement which is the last line of some
proof. Note that, in particular, an axiom is a theorem with a one-line
proof.

In the consideration of an axiomatic theory the notion of truth is
relegated to possible applications of the theory. In any circumstance in
which the axioms are accepted as true statements and the system of
logic is accepted, then the theorems must be accepted as true statements
since the theorems follow from the axioms by logic alone. That is, it is
the potential user of an axiomatic theory who is concerned with the
question of the truth of the axioms of the theory.

Today, axiomatic theories are usually presented in essentially the
same way that Euclid began his development of geometry--by listing
the primitive notions and the axioms of the theory. However, in order
to meet one of the present-day requirements of an axiomatic theory-
that truth play no role--the primitive potions are taken to be undefined
and the axioms are taken as simply an initial stock of theorems. We, shall
elaborate on these matters in connection with a discussion of the evolu-
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tion of axiomatic theories from intuitive theories (which constitute a
primary source of axiomatic theories).

Usually one's first exposure to some branch of science is by way of
an intuitive approach; subjects such as arithmetic, geometry, mechanics,
and set theory, to cite just a few, are approached in this way. An ax-
iomatization of such an intuitive theory can be attempted when the
fundamental notions and properties are believed known and the theory
appears to be sound to the extent that reliable predictions can be made
with it. The first step in such an attempt is to list what are judged to be
the basic notions discussed by the theory together with what are judged
to be a basic set of true statements about these notions. In order to
carry out this step efficiently, one often elects to presuppose certain
theories previously constructed. In most axiomatic work in mathematics
it is customary to assume a theory of logic along with a theory of sets. t
In axiomatic work in an empirical science such as economics or physics
it is standard procedure to assume, in addition to logic and general
set theory, parts of classical mathematics. Once it has been decided
what theories will be assumed, the key steps in the axiomatization can
be carried out. The first of these is the introduction of symbols (includ-
ing, possibly, words) as names for those notions which have been judged
to be basic for the intuitive theory. These are called the primitive sym-
bols (or, terms) of the axiomatic theory. The only further symbols
which are admitted (aside from symbols of the presupposed theories)
are defined symbols, that is, expressions whose meaning is explicitly
stated in terms of the primitive symbols. (The intuitive theory in mind
often suggests the introduction of some such symbols.) The next step
is the translation of those statements that were singled out as expressing
fundamental properties of the basic notions of the intuitive theory
into the language which can be constructed from just the primitive.
and defined terms (and those of any theory which is presupposed).

To obtain an example of a language of the sort mentioned above, let
us consider an axiomiatization of intuitive set theory with the first-order
predicate calculus as the only presupposed theory. In addition to logical
symbols, only one further (primitive) symbol, the familiar one for the
membership relation, shall be employed. Then the language which is
available is that described in Section 4.7, with expressions of the form

xCy
t By a theory of sets we mean some development which includes roughly the content of

Chapters 1, 2, and 3. Often a theory of sets which encompasses this material is referred to as
"general set theory."
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constituting the totality of prime sentences (formulas). A list of useful
defined symbols for the theory appears in Example 4.7.1. If some theory
of logic is not assumed for an axiomatization, then one must include in
the presentation of the theory an axiomatized version of a theory of
inference. A detailed discussion of this begins in Section 9.3.

In a program of the sort we have described for axiomatizing an
intuitive theory, there is often considerable leeway in the choice of
primitive notions. Different. sets may be suggested by various combi-
nations of notions which occur in the intuitive theory. In the modern
axiomatization of Euclidean geometry devised by D. Hilbert there are
six primitive notions: point, line, plane, incidence, betweenness, and
congruence. On the other hand, in that created by M. Pieri there are
but two primitive notions: point and motion. Obviously the choice of
primitive notions for an axiomatic theory influences the choice of axioms.
A great variety of more subtle remarks can be made concerning the
selection of axioms for a particular theory. Some are presented in
Section 4.

While we are dealing in generalities we will mention another stimulus
for the creation of axiomatic theories-the observation of basic like-
nesses in the central features of several different theories. This may
prompt an investigator to distill out these common features and use
them as a guide for defining an axiomatic theory in the manner described
above. Any one of the theories which an axiomatic theory is intended to
formalize serves as a potential source of definitions and possible theorems
of this axiomatic theory. An axiomatic theory which successfully for-
malizes an intuitive theory is a source of insight into the nature of that
theory, since the axiomatic theory is developed without reference to
meaning. One which formalizes each of several theories to some degree
has the additional merit that it effects simplicity and efficiency. Since
such an axiomatic theory has an interpretation in each of its parent
theories (on a suitable assignment of meaning to its primitive terms), it
produces simplicity because it tends to reduce the number of assumptions
which have to be taken into account for particular theorems in any one
of the parent theories. Efficiency is effected, because a theorem of the
axiomatic theory yields a theorem of each of the parent theories. Herein
lies one of the principal virtues of taking the primitive terms of an
axiomatic theory as undefined.

A by-product of the creation of an. axiomatic theory which is the
common denominator of several theories is the possibility of enriching
and extending given theories in an inexpensive way. For example, a
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theorem in one theory may be the origin of a theorem in the derived
theory and it, in turn, may yield a new result in another parent theory.
In addition to the possible enrichment in content of one theory by
another, by way of an axiomatic theory derived from both, there is
also the possibility of "cross-fertilization" insofar as methods of attack
on problems are concerned. That is, a method of proof ' whic h is standard
for one theory may provide a new method in another theory with a
derived theory serving as the linkage.

A full understanding of such remarks as the foregoing cannot possibly
be achieved until one has acquired some familiarity with it variety of
specific theories and analyzed some successful attempts to bring diverse
theories under a single heading. The field of algebra abounds in such
successful undertakings. Indeed, it is perhaps in algebra that this type
of genesis and exploitation of theories has scored its greatest successes.
Several important examples of algebraic (axiomatic) theories are dis-
cussed later.

2. Informal Theories

In this section we shall discuss the formulation of axiomatic theories
when a theory of inference and general set theory are presupposed as
already known. Such axiomatic theories will be called informal theo-
ries. As has already been mentioned, it is common practice in mathemat-
ics to present axiomatic theories as informal theories.

The first [natter to be thoroughly understood about informal theories
is the working forms which are adopted for the assumed theories of
inference and of sets that is, the actual settings in which informal
theories are presented. Concerning the theory of inference, it is simply
the intuitive theory which one. absorbs by studying That
this theory is clearly defined is suggested by the fact that what is judged
to be it proof by one competent is usually acceptable to
other mathematicians. '['his is not the end of the matter, however. The
contents of Chapter 4 indicate that there is it systctu of logic (the first-
order predicate calculus) which is adequate for much of mathematics
and which can be described in precise terms. Both the preciseness and
adequacy of the first-order predicate calculus take on sharp forms later
when we give an version of this theory (Section 9.3) and
then prove its in the sense that every valid formula is a
theorem. Further, there is considerable evidence to support the conten-
tion that the definition of logical correctness which is supplied by this
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symbolic logic is closely attuned to the corresponding intuitive notion
which mathematicians acquire. Such a book as Logic for Mathematicians,
by J. B. Rosser (1953), is rich in examples which illustrate his thesis that
logical principles which are judged correct by most mathematicians are
classified as correct by symbolic logic and vice versa. That is, there is
considerable evidence in support of the thesis that the system of logic
which is presupposed for an informal theory is a clearly defined theory
which can be spelled out if necessary. This empirical conclusion does not
evidence itself in mathematicians giving formal proofs and then using
the mechanical procedures provided by the predicate calculus for testing
their correctness. However, it is usually not difficult to convince oneself
that an accepted, informal proof could be formalized if demanded.

The set-theoretical framework which is assumed for an informal theory
is the general set theory developed in Chapters 1-3. Although contra-
dictions can be devised within this intuitive theory, that part which is
employed in developing informal theories does not lead to such dif-
ficulties so far as is known. For the moment we shall support this latter
statement with only the following remark. The intuitive set theory we
have discussed can be axiomatizcd in such a way that (i) so far as is
known, all undesirable features (that is, the known paradoxes) are
avoided, and (ii) all desirable features consonant with (i) are retained.
An outline of such a development is given in Chapter 7.

We turn now to some examples of informal theories. These will serve
to illustrate the two circumstances described at the end of the preceding
section under which axiomatic theories are devised (namely, to axio-
matize some one intuitive theory and to formalize simultaneously several
theories). Further, they will serve to illuminate our later discussion of
informal theories.

EXAMPLES
2.1. In Example 2.1.2 appears what is essentially Peano's axiomatization of

the natural number system. The primitive notions are natural number, zero (0),
and successor ('), and the axioms are the statements Pi--P6 appearing there.

2.2. Immediately following Theorem 3.4.1 we called attention to certain like-
nesses in the properties of the rational numbers and integers. Specifically, we
noted that the system consisting of Q, the operation of addition, and 0,, as well
as the system consisting of 0 - {0,}, multiplication, and 1, share, with the sys-
tem made up of Z, addition, and 0;, properties (1)-(4) of Theorem 3.3.1. Thus,
we argued, any further properties of the integers which can be derived from
(1)-(4) (for example, those mentioned in Exercise 3.3.5) also hold for the other
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two systems. In terms of our current discussion we may classify that argument
as a bit of axiomatic mathematics. Before formulating explicitly the axiomatic
theory involved we remark that for the derivation of the results stated in Ex-
ercise 3.3.5 the property of commutativity of addition is not required (we
"allowed" the reader to use this property because simpler proofs can be given
with it). Essentially the same simplifications in the proofs can be achieved if
commutativity is assumed only in part, as in the axioms below.

The axiomatic theory to be described is called group theory. The primitive
notions are an unspecified set C, a binary operation in G, for which we use mul-
tiplicative notation (that is, the operation will be symbolized by and the value
at (a, b) of this function on C X G into G will be designated by a b), and an
element e of G. The axioms are the following.

G1. For all a, b, and c in C, a (b c) = (a b) c.

G2. For all a in
G there exists an a' in G such that a a' = a' a = e.

The above is a formulation of group theory as one might find it in an algebra
text. In harmony with the agreement to write the value of at (a, b) as a b,
we call this element the product of a and b. Henceforth we shall use the simpler
notation ab for it. An element which has the property assumed for e in G2 is
called an identity element and an element which satisfies Ga for a given a is called
an inverse of a (relative to e).

A few theorems of group theory, including those to which reference has been
made in connection with number systems, are proved next.

G4. G contains exactly one identity element.

Proof. In view of G2, only a proof of the uniqueness is required. Assume that
each of el and e2 is an identity element of G. Then ela = a for every a, and
ae2 = a for every a. In particular, ele2 = e2 and eie2 = el. Hence, el = e2 by
properties of equality.

G6. Each element in G has exactly one inverse.

Proof. Since G$ asserts the existence of an inverse for each element a, only the
proof of its uniqueness remains. Assume that both a' and a" are inverses of a.
Then a"a = e and aa' = e. By G1, (a"a)a' = a"(aa'), and, hence, ea' = a"e.
Using G2 it follows that a' = a".

In multiplicative notation the inverse of a is designated by "a'1"; thus a -'a =
as 1 = e (the unique identity element of C).

Ge. For every a, b, and c in G, if ab = ac, then b = c, and, if ba = ca,
then b = c.
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Proof. Assume that ab = ac. Now a-'(ab) = (a-'a)b = eb = b. On the other
hand, a-'(ab) = a-'(ac) _ (a-'a)c = ec = c. Hence, b = c. The proof of the
remaining assertion is similar.

Proofs of the next two theorems are left as exercises.

G7. For all a and b in G, each of the equations ax = b and ya = b has a
unique solution in G.

G8. For all a and b in G, (ab)-' = b-'a

2.3. The theory to be described has its origin in Euclidean plane geometry.
It is that generalization of Euclidean geometry known as afline geometry. The
primitive notions arc a set (1' (whose members are called points and will be de-
noted by capital letters), a set 2 (whose members are called lines and will be
denoted by lower-case letters), and a set q called the incidence relation. The
axioms are as follows.

AG,. J C 6' X 2. ((P, 1) C 9 is read "P lies on l," or "l contains P," or
"1 passes through P.")

AGs. For any two distinct points P and Q there is exactly one line passing
through P and Q. (This line will be denoted by P + Q.)

Before stating the next axiom we make a definition. If I and in are two lines
such that either I = m or there exists no point which lies on both l and in, then
I and in are called parallel.

AG3. For any point P and any line I there exists exactly one line in passing
through P and parallel to I.

AG,. If A, B, C, D, E, and F are six distinct points such that A + 13 is
parallel to C + 1), C + I) is parallel to E -F F,, A 4- C is parallel
to B + D, and C + E is parallel to 1) + F, then A -F- E is parallel
to B + 1".

AG6. There exist three distinct points not on one line.

Proofs of a few simple theorems are called for in the following exercises.

Since axiomatic theories are often elaborate structures, they deserve
elaborate symbols as n;lnes. To our mind, capital (;ernrut letters
suffice. Consielcr now an iniorinal theory T. Associated with it is a
language which can be constructed from the primitive and defined
terms of I and the terminology of set theory and logic. We shall call
this language the T -language and its nlcniber sentences `;-sentences.
"Those T-sentences which involve no free variables shall be called
a-statements. (Parenthetically we remark that Z--sentences, are usually
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written using a combination of words and symbols, as in the foregoing
examples, instead of the purely symbolic style of Examples 4.7.1 -4.7.3.)

An interpretation of `;" consists of selecting a particular nonempty
set D (called the domain of the interpretation) as the range for the
individual variables of ` and assigning to each primitive term an object
of the same "character" constructed from D; that is, to a binary rela-
tion symbol we assign a binary relation in D, to a binary operation
symbol we assign a binary operation in D, to an individual constant
we assign an element of D, and so on. This can scarcely be regarded
as a definition of an interpretation in view of its vagueness. Until such
time as we correct this deficiency we shall rely on the reader's intuition
and the examples below. If I is an interpretation of `3: in a system
X9J1 and if S is a `3"-sentence, then we shall call the sentence, which
results on the assignment of meaning (as specified by I) to the primitive
terms of `;" that occur in S, an interpretation of Sin 931. If an interpreta-
tion of S in 931 is it true statement of 931, we shall say that S is true in
931, or that 931 is a model of S. If 2; is a set of a-sentences, then 9X is
called a model of I iff it is a model of each member of 2;. If T1 is a
model of the set of axioms of T, then 931 is called a model of `i;". Notice
that such definitions are relative to some one interpretation of `; in P.

As our first illustration of the notion of it model we note that each of
the progressions described in Example 2.1.1 is a model of the Peano
axioms under the obvious interpretations of natural number, zero, and
successor. Next, the set 0(X) of all one-to-one mappings on a nonempty
set X onto itself together with function composition and ix is a model of
the theory of groups or, more simply, is a group. Again, the power set of
any set together with the symmetric difference operation and the empty
set is a group. As for models of atline geometry, one who is familiar, to
some degree, with intuitive Euclidean geometry will undoubtedly accept
it as an afline geometry. A radically different model results on setting
(f' = 11, 2, 3, 4},,c _ {{1, 21, {1, 3}, 11, 4}, {2, 3}, {2, 4}, 13, 4}} and
defining P to be on I iff P C 1. The verification that all axioms are
satisfied is left as an exercise.

It is an accepted property of a model T1 of an informal theory `;` that
each theorem of is true in 91.f The supporting argument is simply that
(by definition of a model of Z) each axiom is true in 931 and each
theorem of T_ is derived from the axioms by logic alone. An illustration
may be given in terms of Theorem G8 of Example 2.2. 'The interpreta-

t A 2-sentence in which an individual variable x has a free occurrence is interpreted as if
the quantifier "For all x" were prefixed to the sentence.
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Lion of Gg in the group G(X) of mappings is the statement that if
a, b C G(X) then (a o b)-' = b'-' o a-', which is an important property
of functional inversion. The interpretation of Gg in the group consisting
of Z, addition, and 0 is the statement that -(a + b) = (-b) + (-a).
Thus, these two results, diverse in appearance, are interpretations of a
single statement of group theory.

EXERCISES
2.1. Prove Theorems G7 and Cg in Example 2.2.
2.2. The theory of commutative groups differs from the theory of groups in

that it includes one further axiom:

G9. For all a and b in G, ab = ba.

It is common practice to use additive notation for the operation in a commu-
tative group (that is, to write a -I- h instead of ab), to write 0 instead of e, and
to write -a instead of a`.

Suppose that G together with A- and 0 is a commutative group. Prove each
of the following theorems.

(a) -(a -l- b) = (-a) + (-b).
(b) If "a - b" is an abbreviation for "a + (-b)," then a + b = c iff b =

c - a.
(c) a-(-b)=a-I-batic] -(a-b)=b-a.
(d) If f: G-+- G where f(a) _ -a, then f is a one-to-one and onto mapping.

2.3. Let Z be the set of residue classes [a] of Z modulo n (see Section 1.7).
Show that the relation {(([a], [b]), [a -I- bbl)I Jal, [b] F_ Z,,} is a binary opera-
tion in 7.,,. Show that Z. together with this operation and [0] is a commutative
group.

2.4. Show that an operation + can be introduced in the set I of equiv-
alence classes defined in Exercise 1.7.11, by the definition [a, bJ A- [c, d] =
[a + c, b + d], where [a, b] is the equivalence class determined by (a, b), and
so on. Prove that I together with this operation and [1, 1] is a commutative
group.

2.5. Show that R together with the operation * such that x * y = (x3 +ya) 13
and 0 is a group.

2.6. Write out the elements of G(X) for X = 11, 2} and for X = 11, 2, 3}.
Show that the group associated with the latter set of mappings is not commu-
tative.

2.7. Let G be a nonempty set and be a binary operation in G such that
G, and G7 hold. Prove that C, , and a suitable clement of C is a group.

2.8. Let G be a nonempty finite set and be a binary operation in C such
that G, and G6 hold. Prove that C, , and a suitable clement of C is a group.
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2.9. This exercise is concerned with afine geometry as formulated in Ex-
ample 2.3.

(a) Prove that "is parallel to" is an equivalence relation on C. An equivalence
class is called a pencil of lines.

(b) Let a, and 7r2 be two distinct pencils of lines. Using only AG2 and AG3,
prove that the number of points on any line 1 of 7r, is the same as the
number of lines of 7r2.

(c) Using (b), prove that if there exist three distinct pencils of lines, then all
lines have the same number of points, all pencils have the same number
of lines, and every pencil has the same number of lines as the number of
points on every line.

(d) From AG6 infer that there exist at least three distinct pencils of lines.
(c) Show that the set of four points and six lines given in the text is a model

of the theory.
(f) Show that any affine geometry contains at least four points and six lines.

2.10. Let S be the axiomatic theory having as its primitive notions two sets
P and L and as its axioms the following.

A,. If l C L, then I -C P.
As. If a and b are distinct elements of P, then there exists exactly one

member I of L such that a, b C 1.
A3. For every I in L there is exactly one I' in L such that I and I' are

disjoint.
A4. L is nonempty.
A6. Every member of L is finite and nonempty.

Establish the following theorems for e.

(a) Each member of L contains at least two elements.
(b) P contains at least four elements.
(c) L contains at least six elements.
(d) Each member of L contains exactly two elements.

3. Definitions of Axiomatic Theories by Set-theoretical
Predicates

We continue our discussion of the axiomatization of intuitive theories
with a description of a uniform approach which takes fuller advantage
of the expressive powers of general set theory. The point of departure
is the observation (which is substantiated, in part, by those theories
discussed in Examples 2.1-2.3) that the primitive notions of a great
variety of mathematical theories consist of a set X and certain constants
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associated with X. These constants may be of various types: elements
of X (such as the identity element of a group), subsets of X, collections
of subsets of X (such as the lines of an affine geometry), subsets of X"
for some n (which include relations in X and operations in X), and so
on. Collectively, the constants serve as the basis for imposing a certain
structure on X (which is the object of study of the theory). The structure
itself is given in the axioms, which are the properties assigned to X and
the constants (including, possibly, the existence of inner relations among
them).

The approach to the axiomatization of theories which stems from the
foregoing observations calls for definitions of axiomatic theories by way
of set-theoretical predicates. A consideration of several examples will
serve to bring the procedure into focus. In our first example we consider
the theory of partially ordered sets. The purely set-theoretical character
of the predicate "is a partially ordered set," which is defined should be
apparent.

DEFINITION A. W is a partially ordered set if
there is a set X and a binary relation p such that
4C = (X, p) and

01. p is reflexive in X,
02. p is antisymmetric in X,
03. p is transitive in X.

This definition illustrates a convention which we shall follow in this
discussion, namely, to exhibit the basic set as the first coordinate of an
ordered n-tuple, and the associated constants, in some order, as the
remaining coordinates.

The sentence in Definition A may be regarded as being in need of
recasting if it is to appear in the running text since it begins with a
symbol. The following version meets this objection.

A partially ordered set is an ordered pair (X, p) where
X is a set, p is a binary relation, and the following
conditions are satisfied.

01. p is reflexive in X.
02. p is antisymmetric in X.
O. p is transitive in X.
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An alternative to Definition A, which is closer to standard mathe-
matical practice, is a conditional definition.

DEFINITION B. Let X be a set and p be a binary
relation. Then (X, p) is a partially ordered set if

0t. p is reflexive in X,
02. p is antisyrnmetric. in X,
03. p is transitive in X.

This definition is conditional in the sense that the proper definition is
prefaced by a hypothesis. When it definition is so formulated it is com-
mon practice to omit the hypothesis in stating theorems of the theory.

Our second example is a definition of group theory along the lines
suggested by the axiomatization appearing in Example 2.2.

DEFINITION C. (i is a group if there is a set X,
a binary operation in X, and an element e of X such
that V = (X, , e) and

G1. for all a, b, and c in X, a (b c) _ (a b) c,

Cs. for all a
in X there exists an a' in X such

that a- a' =

a theory Z is axiomatized by defining a set-theoretical predi-
cate, what we have called up to this point the primitive symbols (or
terms) of the theory appear in the running text immediately preceding
the axioms. Also in this circumstance models of `. are simply those
entities which satisfy the predicate. For the theory of groups, for exam-
ple, the point can be put quite trivially as follows: If (X, , e) is a group,
then (X, , e) is a model for the theory of groups.

EXERCISES
't'hese exercises are concerned with the theory of simply ordered commutative

groups, which may be defined as follows: (SS is it simply ordered continut,ttive
group (.r.o.c.g.) iff (SS = (C, 1-, 0, <), where

SG,. (G, -+, 0) is a commutative group,
SG2. ((;, <) is a simply ordered set,
SG3. for all a, b, and e in G, if a < b, then a -- c < b -1- c. (I Iere, "a < b"

is an abbreviation for "a < b and a X. b.")
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All results obtained earlier for groups, in particular, commutative groups,
may be used when needed. Also, properties of simply ordered sets may be used.

3.1. Find two s.o.c.g. within the real number system.
3.2. If (G, +, 0, <) is a .s.o.c.g., define. GE to be (a C GI0 < a). Prove the

following properties of G+.

(a) If a E G+, then -a (Z GE.
(b) If a ; 0, then either a E G+ or -a C G1.
(c) If,a,bCG',then a+bCG+.
3.3. Prove the following theorems for a s.o.c.g.

(a) Ifa <b,thena-c<b-c.
(b) If a + c < b + c, then a < b.
(c) If a<bandc<d,then a-i-c<b+d.
(d) If a < b, then -b < -a.
3.4. Prove the following theorem. If G has more than one clement and

(G, +, 0, <) is a s.o.c.g., then G has infinitely many elements.

4. Further Features of Informal Theories

In this section we introduce a variety of notions which have relevance
to informal theories. Most of these serve to provide a classification
scheme for a given theory. Thereby its status and its merits can be
summarized concisely.

Suppose that A is a formula of some theory Z and that both A and
-1A are theorems. Then, if the system of logic employed includes the
statement calculus with modus ponens as a rule of inference, any formula
B of the theory is a theorem. Indeed, A (-i A---> B) is a theorem
since it is a tautology, and two uses of modus ponens establish B as a
theorem. A theory Z is called inconsistent if it contains a formula A
such that both A and -i A are theorems. A theory is called consistent
if it is not inconsistent-that is, if it contains no formula A such that
both A and --,A are theorems.

Since in any theory which we shall consider the logical apparatus will
include what was used above, we regard an inconsistent theory as
worthless, since every formula is a theorem. Thus, the question of
establishing the consistency of a theory becomes of primary importance.
A moment's reflection will point out the high degree of improbability of
reaching an answer by direct application of the definition and, con-
sequently, of the need for a "working form" of the definition of con-
sistency. That which is usually adopted in mathematics is: the existence
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of a model of a theory implies the consistency of the theory. The sup-
porting argument is based on (i) the property of a model mentioned at
the end of Section 2, namely, if 9x1 is a model of the theory Z, then each
theorem of X is true in T Z, and (ii) the assumption that if S is a Z-state-
ment then not both of S and -,S are true in 92. Indeed, assuming (i)
and (ii), suppose that has a model TZ. If both of the T-statements S
and -,S are theorems, then both S and --,S are true in X71 by (i) and
this is a contradiction by (ii). Hence, if Z has a model, then Z is
consistent.

In essence, the foregoing working form of consistency merely sub-
stitutes an inspection of true statements about a model of a theory for
an inspection of theorems of the theory. If a model of a theory (X, )
can be found such that the interpretation of X is a finite set, one may
expect that the question of whether it is free from contradiction can be
settled by direct observation. For example, the fact that ((e}, , e),
where e e = e, is a model of group theory establishes the consistency
of group theory beyond all doubt.

If, on the other hand, a theory has only infinite models (that is,
models where the interpretations of the basic set are infinite), then no
net gain results upon substituting an inspection of true statements about
a model for that of theorems of the theory. Such models of a given
theory T really amount to interpretations of T in another theory such
that the interpretation of each axiom of Z is a theorem of the other
theory. If this other theory is consistent, then T must be. For suppose
that a contradiction were deducible from the axioms of Z. Then, in the
other theory, by corresponding inferences about the objects constituting
the model, a contradiction would be deducible from the corresponding
theorems. Such demonstrations of consistency are merely relative: The
theory for which a model is devised is consistent if that from which the
model is taken is consistent. Let us consider some examples. As described
in Section 1, the plane geometry of Bolyai-Lobachevsky has a model in
Euclidean plane geometry. Thereby the relative consistency of this non-
Euclidean geometry is established in the form : If Euclidean geometry
is consistent, then so is the Bolyai-Lobachevsky geometry. A proof of
the consistency of Euclidean geometry, as precisely formulated in
Hilbert (1899), can be given by interpreting a point as an ordered pair
of real numbers and a line as a linear equation; in more familiar guise
this is simply the standard coordinatization of the Euclidean plane.
However, since the theory of real numbers has never been proved



238 Informal Axiomatic Mathematics I C H A P. 5

consistent, one may conclude merely that if the theory of real numbers
is consistent, then so is Euclidean geometry. In other words, we obtain
a relative consistency proof. In turn, since we have seen that a construc-
tion of the real numbers can be given, starting from Peano's axioms,
within a sufficiently rich theory of sets, a consistency proof of the theory
of real numbers can be given relative to a theory which embraces both
Peano's theory and this theory of sets.

Assuming that the consistency of a theory has been settled in the
affirmative by proof or by faith, the question of its completeness may
be raised. In rough terms, a theory is called complete if it has enough
theorems for some purpose. The variety of purposes which may enter
in this connection are responsible for a variety of technical meanings
being assigned to this notion. However, most definitions of complete-
ness fit into either the category which corresponds to a positive approach
or that which corresponds to a negative approach to the question of a
sufficiency of theorems. We shall give one definition in the first cate-
gory and two in the second. The setting for the first of these, which is
in the positive vein, is as follows. We know that if Dl is a model of a
theory Z and T is a theorem of Z, then T is true in V. We might
regard T as being complete with respect to T1 if, conversely, whenever a
Z-statement has a true statement of 1J as its interpretation, then that
a-statement is a theorem. This suggests calling Z complete if it is
complete with respect to every model. If we understand by a (uni-
versally) valid statement of a theory one which is true in every model,
then the notion of completeness which we have in mind may be formu-
lated as: A theory Z is deductively complete if every valid statement
of is provable. The statement calculus can be formulated as an
axiomatic theory which is complete in this sense (see Section 9.2);
that is, every tautology is a theorem.

If we approach the question of a sufficiency of theorems in a negative
fashion, we are led to a second category of formulations of complete-
ness. For example, we might say that a theory is complete if the axioms
provide all theorems we can afford to have without some dire conse-
quence (such as inconsistency) ensuing. A circumstance which might
suggest this interpretation of completeness is an attempt to devise an
axiomatic theory intended to formalize some intuitive theory. For then
one strives to include sufficient axioms that as many as possible true
propositions of the intended model aan be obtained as interpretations
of theorems of the theory. Hence, one keeps adding, as axioms, formulas
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which express true propositions of the model up to the point that an
inconsistent theory results. This approach to completeness may be
crystallized in the following definition. An axiomatic theory Z is
formally complete provided that any theory ', which results from Z
by the adjunction to the axioms of of a statement of which is not
already a theorem of ';', is inconsistent. A theory which is formally
complete may be said to have maximum consistency.

An axiomatic theory is said to be negation complete if, for any
statement A of the theory, either A or --,A is a theorem. It is clear that
negation completeness implies formal completeness. Conversely, if the
theory of inference employed in developing an axiomatic theory includes
a deduction theorem-that is, a theorem which asserts that if a formula
B is deducible from formulas A,, A2, ., A,,,, then A. B is deducible
from A,, A2, , A,,,_, -then formal completeness implies negation corn-
pleteness. To show this, suppose that a theory T. is formally complete
and that the T--statement A is not a theorem. Th.'n the theory which
results on the adjunction of A as an axiom is inconsistent. That is, if I'
is the set of axioms of :?", then a contradiction C can be derived from
IF U I A y, whence A - C can be derived from 1'. In turn, since
(A --> C) --+ --,A is a theorerrt (being a tautology), A can be derived
from A > C. I fence, -, A can be derived from I'; that is Z is negation
complete.

We may loosely relate consistency and completeness in the following
way. An axiomatic theory is consistent if it does not have too many
theorems and it is complete if it does not have too few. If an axiomatic
theory is both consistent and negation complete, then all questions
which arise within the framework of the theory are theoretically decid-
able in exactly one way. For any statement of the theory is either prov-
able or refutable (that is, its negation is provable) because of com-
pleteness, and cannot be both proved and refuted because of consistency.
Such a state of affairs for a theory does not always imply that proofs or
refutations of specific statements of the theory are automatically made
available, but in some interesting cases it does. 't'hat is, for some con-
sistent and complete theories there exists a method which can be
described in advance for deciding in a finite number of steps whether
a given formula of the theory is a theorem. Such theories are called
decidable (sere Section 9.5).

Notions of the sort which we have introduced so far in this section as
well as that of categoricity (which is described next) cannot, in general,
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be discussed in a precise and definitive way at our present intuitive level
of discourse. A precise account is possible only when the theory of
inference is explicitly incorporated into an axiomatic theory. In Chap-
ter 9 we shall show how this can be done for an important class of
theories. Then we shall re-examine for this class the concepts of con-
sistency, completeness, categoricity, and decidability, including inter-
relations which exist among them.

The remaining notion which we shall introduce as an ingredient of a
classification scheme for informal theories arises in connection with the
purpose for which a theory is devised. If it is intended that an axiomatic
theory formalize some one intuitive theory, a natural requirement for
the successfulness of the axiomatization is the presence of a theorem to
the effect that any two models of the theory arc indistinguishable apart
from the terminology they employ. In other words, the theory has
essentially only one model. For example, one would certainly hope to
have such a theorem for any theory designed to formalize Euclidean
geometry or the real number system, since we think of each of these
as a single clearly delimited theory. A theory is called categorical if it
has essentially only one model. This will qualify as a definition as soon
as the vague notion that models of a theory are indistinguishable is
made precise.

The sort of indiscernibility of models which is involved is known as
isomorphism. A definition which could cover all conceivable situations
would be too unwieldy to attempt. This is the reason for the repeated
occurrence of definitions bearing this name. Each is tailored to fit the
distinguishing features of the theory under consideration. Already we.
have given three such definitions: one for partially ordered sets, one for
integral systems, and another which is applicable to systems consisting
of a set with two binary operations and an ordering relation. In order
to further strengthen the reader's comprehension of the concept and to
serve as a vehicle for several general comments, we offer definitions in
three specific cases (labeled I,, Ia, and 13). These together with those
definitions given earlier should serve to clarify the essence of isomorphism.

I,. Let (X,, pi) and (X2, p2) be two models of a theory having a set
and a pertinent relation as primitive notions. Then (X,, p,) is isomorphic
to (X2, p2) if there exists a function f such that-

(i) f is a one-to-one correspondepce between X, and X2,
(ii) if x, y C X, and x p, y, then f(x) P2 f(y),
(iii) if x, y C X2 and x ply, then f-'(x) pl f-'(y)
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This definition is patterned after that of isomorphism for partially
ordered sets (Section 1.11). It is applicable to the case where pi is a
function on Xi into Xi, i = 1, 2. In this event the definition of isomor-
phism can be simplified to the following, as the reader can verify.

Let (X1, f,) and (X2, fz) be models of a theory whose primitive notions
are a set and a function on that set into itself. Then (XI, fl) is isomorphic
to (Xz, fz) if there exists a function f such that

(i) f is a one-to-one correspondence between X, and Xz,
(ii) if x C Xi, then f(f,(x)) = fz(f(x)).

Thus, in this case only one of the two requirements for isomorphism
must be proved; the other, which completes the symmetry inherent in
the concept of isomorphism, necessarily follows.

12. Let (XI, -i) and (Xz, 02) be two models of a theory having a set
and a binary operation in that set as its primitive notions. Then (Xi, ^i)
is isomorphic to (X2j -z) if there exists a function f such that

(i) f is a one-to-one correspondence between X, and Xz,
(ii) if x, y C XX, then f(x -,y) = f(x) -z f(y).

It is left as an exercise to show that this formulation of isomorphism is
an equivalence relation in any collection of models of the theory de-
scribed. In particular, therefore, as in the specialized version of I, given
above, the symmetric nature of the concept follows automatically.

Is. Let (Xi, Y,, p,) and (Xz, Y2, P2) be two models of a theory having
as its primitive notions two sets and a relation whose domain is the first
set and whose range is the second set. Then (X,, Y,, pi) is isomorphic to
(X2j Yz, p2) iff there exists a function f such that

(i) f is a one-to-one correspondence between X, U Y, and Xz U Yz
such that f(XI) = Xz and f(Y,) = Y2,

(ii) f preserves the relations p, and P2 in the sense of definition I,.

This is not the only definition of isomorphism which might be made
under the circumstances. The one given takes into account the preser-
vation of set-theoretical interconnections between Xi and Yi, i = 1, 2.

We now define an informal theory to be categorical if any two
models of it are isomorphic. In view of Theorem 2.1.8, the theory of
integral systems, which was devised to axiomatize the natural number
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sequence, is categorical. t This result is one which might be hoped for
since the theory is intended to formalize just one intuitive theory. An
elementary example of a categorical theory is obtained by adding to
the five axioms for affinc geometry (Example 2.3), the following.

AG6. The set (P has exactly four members.

The resulting theory is consistent by virtue of the model given in
Section 2. The proof that it is categorical is left as an exercise.

Analogous to the acceptance of the existence of a model as a criterion
for consistency, the existence of essentially only one model (that is,
categoricity) is often accepted as a criterion for negation completeness.
To state the pertinent result we make a definition. A statement of a
consistent theory T will be called a consequence of if it is true in
every model of T. Then, if Z is a consistent and categorical theory, for each
T-statement S, either S is a consequence of Z or -1 S is a consequence of Z. This,
it will be noted, amounts to negation completeness with provability
replaced by a weaker notion. The proof makes use of the following
property of models. If Y, and 9Jtz are isomorphic models of a theory Z,
then for every a-statement S, either S is true in both f l1 and 9)22 or S
is false in both. Assuming this as proved, the main result can be derived
as follows. Suppose that the T-statement S is not a consequence of the
consistent theory Z. Then, by the definition of consequence, there
exists a model 9N, of Z which does not satisfy S. Let 9N be any model
of Z. Then, since 99J1 is isomorphic to 9 lt, S is not true in T2, and, hence
-,S is true in P. Since 9t is any model of T, this means that --is is a
consequence of T.

A theory which is consistent and noncategorical has essentially dif-
ferent (that is, nonisomorphic) models. This is precisely what should be
anticipated for a theory intended to axiomatize the common part of
several different theories. The theory of groups is an excellent example.
Because it has such a general character it has a wide variety of models,
which means that it has a wide range of application.

We conclude this section with several miscellaneous remarks. The
first involves assigning a precise meaning to the word "formulation"
which we have used frequently. As we described it, an informal theory
Z includes a list TO of undefined terms, a list T1 of defined terms, a list
P of axioms, and a list Pl of all thqse other statements which can be
inferred from Po in accordance with some system of logic. The set TO

t Later we shall find it necessary to modify this assertion.
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serves to generate TO U Ti, the set of all technical terms of ;'; the set P0
serves to generate Pu U P1, the set of all theorems of Z. For the ordered
pair (To, Po) we propose the name of a "formulation" for T. A study of
T may very well culminate in the discovery of other useful formulations.
To obtain one amounts to the determination of: (i) a set To' which is a
subset of To U T, (which may or may not differ from 7o), and (ii) a
subset P of Po U P, whose member statements are expressed in terms of
the members of To' and from which the remaining theorems of the theory
can be derived. For a pair of the form (To', PP) to be a formulation of T,
it is clearly sufficient that the members of To can be defined by means
of those in To and that the statements of Po can be derived from those
of P. For many of the well-known axiomatic theories there exists a
variety of formulations. This is true, for example, of the theory of
Boolean algebras discussed in Chapter 6. A rather trivial example appears
in Section 1.11, and we may rephrase it to suit our present purposes:
As a different formulation of the theory of partially ordered sets we may
take that consisting of a set X together with a relation that is it-reflexive
and transitive on X (see Exercise 1.11.3). Another example is implicit
in a remark made in Section 1; rephrased, it amounts to the assertion
that Hilbert and Pieri gave different formulations of a theory which
axiomatizes intuitive plane geometry.

Different formulations of a theory amount to one variety of possible
approaches which can be made to one and the same mathematical
structure. Depending on the criteria adopted, one may show a marked
preference for one formulation over others. Aesthetic considerations may
influence one's judgment, and the simplicity of the set of axioms in
conjunction with the elegance of the proofs may also play an important
role. One may prefer a particular formulation because he feels it has a
"naturalness" that others lack. He may favor a formulation which
involves the fewest number of primitive notions or axioms.

A notion which is pertinent to a formulation of an informal theory
is that of the independence of the set of axiomns. A set of axioms is
independent if the omission of any one of them causes the loss of a
theorem; otherwise it is dependent. A particular axiom (considered
as a member of the set of axioms of some formulation) is independent
if its omission causes the loss of a theorem; otherwise it is dependent.
Clearly, an independent axiom cannot be proved from the others of a
set of which it is a member, and conversely. Further, the set of axioms
of a formulation is independent iff each of its members is independent.
Models may be used to establish the independence of axioms. For
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example, the independence of the axioms 0r, 02, 03 for the theory of
partially ordered sets (see Section 3) may be shown by constructing a
model of each of the three theories having exactly two of 0r, 02, and 03
as axioms and in which the interpretation of the missing axiom is false.
Otherwise expressed, the independence of 03, for example, is equivalent
to the consistency of the theory having 01, 02, and the negation of 03
as axioms. The independence of a set of axioms is a matter of elegance.
A dependent set simply contains one or more redundancies; this has no
effect on the theory involved.

The foregoing concepts of independence for both individual axioms
and sets of axioms have analogues for primitive terms. A given primitive
term (considered as a member of the set of primitive terms in a formula-
tion of a theory) is independent if it cannot be defined by relation to
the remaining primitive terms and a set of primitive terms is indepcnd-
ent if each of its members is independent. Models are also used to show
such independence in the following way. To prove that a particular
primitive symbol Q of some formulation of a theory Z is independent
of the remaining primitives, we exhibit two models 9121 and J 2 of $
which have the same domain and in which the interpretation of each
primitive term except Q is the same but which give different interpreta-
tions to the symbol, Q. This is known as Padoa's method for demon-
strating definitional independence. A complete account of this method,
which is due to the Italian logician, A. Padoa, is given in J. C. C.
McKinsey (1935); we shall be content. to consider an example. In the
exercises for Section 3 is a formulation of the theory of simply ordered
commutative groups. We will show that the binary relation < is an
independent primitive. For this we introduce the interpretations I2r
and 9)22 in both of which we take G as Z, + as ordinary addition, 0 as
zero and, in Mgr we take < to be the familiar relation of less than or
equal to, while in 122 we take < to be the familiar relation of greater
than or equal to. Then, clearly, the interpretations of < are different
(for example, 2 < 3 is true in 912r but false in T22)- We conclude that <
cannot be defined in terms of the remaining primitives, for otherwise
its interpretation would have to be the same in both models since the
other primitives are the same.

In order to motivate the final remark we recall'i'heorern 1.11.1, which
asserts that every partially ordered set is isomorphic to a collection of
sets partially ordered by inclusion. That is, to within isornorphisrn, all
models of the theory of partially ordered sets are furnished by col-
lections of sets. In general, a theorem to the effect that for a given
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axiomatic theory Z a distinguished subset of the set of all models has
the property that every model is isomorphic to some member of this
subset is a representation theorem for Z. Analagous to the case of the
theory of partially ordered sets where, from the outset, collections of
sets constitute distinguished models, in the case of an arbitrary theory Z,
even though it is noncategorical, one particular type of model may
seem more natural. In this event a representation problem arises-
the question whether there can be proved a representation theorem
for X which assi its that this type of model yields all models to within
isomorphism. When such a problem is answered in the affirmative,
new theorems may follow for Z by imitating proof techniques that
have proved useful in those theories which, in effect, supply all models.

EXERCISES
4.1. (a) Establish the consistency of the theory of partially ordered sets by

way of a model.
(b) Show that this is a noncategorical theory.
(c) Show that the set of axioms {O,, 02, 03) for partially ordered sets

is independent.
4.2. (a) Show that the theory of groups is noncategorical.

(b) Defining a group as an ordered triple (C, , e) such that G1, G2, and
G3 of Example 2.2 hold, establish the independence of {G,, G2, G3} .

(Suggestion: Use a multiplication table for displaying the operation
which you introduce into any set.)

4.3. Consider the axiomatic theory having as its primitive notions two sets
A and (Id and having as axioms the following.

(i) Each element of B is a two-element subset of A.
(ii) If a, a' is a pair of distinct elements of A, then {a, a') C B.

(iii) A V B.
(iv) If B, B' is a pair of distinct elements of B, then B (1 B' C A.

Show that this theory is consistent. Is it categorical?
4.4. Consider the axiomatic theory whose primitive notions are a nonempty

set A and a binary operation (x, y) -9- x - y (that is, we write the image of (x, y)
as x - y) in A, which satisfies the identity

y=x-[(x-z)-(y-z)].
Show that this theory is consistent.

4.5. Consider the axiomatic theory whose primitive notions are a nonempty
set A, a binary operation (x, y) x X y in A, and a unary operation x-4- x'
in A. The axioms are the following.

(i) X is an associative operation.
(ii) (x X y)' = y' X x'.
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(iii) IIxXv= zXi for some z, then x=y.
(iv) If x = y', then x X y = z Xi for all z.
(a) Show that the theory is consistent.
(b) Show that this set of axioms is dependent.

CHAP. 5

4 6. Prove the assertion made in the text to the effect that if p; is a function
or. A, into X;, i = 1, 2, then (X,, pl) is isomorphic to (X2, p2), provided there
exists a one-to-one correspondence f : X, -+- X2 such that f (pi(x)) = ps(f (x)) for
all x in X.

4.7. Prove that the type of isomorphism labeled 12 is an equivalence relation
in any set whose members are systems consisting of a set together with an
operation in that set.

4.8. Assume that of two isomorphic models of the theory considered in Ex-
ercise 4.4, one is a group. Prove that the other is a group.

4.9. The set {e, a, b, c} together with the operation defined by the following
multiplication table is a group. Determine six isomorphisms of this group with
itself.

e a b c

e a b c

a e c b

b c e a

c b a e

4.10. Devise a definition of isomorphism for systems consisting of a set to-
gether with two operations.

4.11. Consider an axiomatic theory Z formulated in terms of two sets, whose
members are called points and lines, respectively, and whose axioms are as
follows.

(i) Each line is a nonempty set of points.
(ii) The intersection of two lines is a point.

(iii) Each point is a member of exactly two lines.
(iv) There are exactly four lines.

(a) Show that Z is a consistent theory.
(b) Show that there are exactly six points in a model of Z.
(c) Show that each line consists of exactly three points.
(d) Find two models of T.
(e) Is T categorical? Give reasons for your answer.

4.12. Show that the axiomatic theory defined in Exercise 4.4 is a formulation
of the theory of commutative groups.

4.13. Show that the axiomatic theory defined in Exercise 4.5 is a formulation
of the theory of groups.

4.14. Show that the following is another formulation of the theory of groups.
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A group is an ordered triple (C, , ') such that G is a set, is a binary operation
in C, ' is a unary operation in C, and

(i) C is nonempty,
(ii) is associative,

(iii) a' (a b) = b = (b a) a' for all a and b.

4.15. Show that the following is another formulation of the theory of groups.
A group is an ordered triple (C, , e) such that C is a set, is a binary operation
in C, e is a member of C, and

(i) is an associative operation,
(ii) for each a in C, e a = a, and there exists a' in G such that a' a = e.

4.16. Consider the theory whose primitive notions are a set X, a binary opera-
tion in X, and whose axioms are the following.

(i) X is nonempty.
(ii) is an associative operation.

(iii) To each element a in X there corresponds an element e of X such that
e a = a e = a, and a possesses an inverse a' relative to e in X (that is,

Show that if (S, ) is a model of the theory, then there exists a partition of S
such that each member set determines a group.

4.17. Consider the theory T whose primitive notions are the power set of a
set S and a mapping f on (P(S) into itself, and whose axioms are as follows.

(i) For all .Y in (P(S), Xf 13 X.
(ii) For all X in P(S), (Xf)f = X'.

(iii) For all X and Y in PPS), X D Y implies Xf 1) Y'.

Show that another formulation of T. results on adopting as the sole axiom:

(X U Y)f D (Xf)f U Yf U Y, for all X and Y in 6'(S).

BIBLIOGRAPHICAL NOTE
Discussions of axiomatic theories and the axiomatic method, pitched at about

the same level as ours, appear in R. L. Wilder (1952), E. It. Stabler (1953),
and A. Tarski (1941).



CHAPTER 6 Boolean Algebras

T; r. THEORY or Boolean algebras has historical as well as pres-
ent-day practical importance. For the beginner its exposition should
prove a serviceable vehicle for assimilating many of the concepts dis-
cussed in relation to informal theories in Chapter 5. Moreover, it
illustrates the important type of axiomatic theory known as an "algebraic
theory." The theory of Boolean algebras is, on one hand, relatively
simple and, on the other hand, exceedingly rich in structure. Thus, its
detailed study serves in some respects as an excellent introduction to
techniques which one may employ in the development of a specific
axiomatic theory. The only possible shortcoming is that the ease with
which it may be put into a relatively completed form is somewhat
misleading, so far as axiomatic theories in general are concerned.

This chapter presents first a natural formulation of the theory. Then
a formulation which is commonly regarded as being more elegant is
given. This second formulation is used in the development of the next
topic, the representation of Boolean algebras as algebras of sets. Next, it
is shown that a statement calculus determines a Boolean algebra in a
natural way. It is by way of this Boolean algebra associated with a
statement calculus that statement calculi can be analyzed by so-called
Boolean methods and interconnections be established between the theory
of Boolean algebra-, and that of statement calculi. This is developed in
the last three sections of the chapter.

1. A Definition of a Boolean Algebra

By an algebra of sets based on U we shall mean a nonempty collec-
tion a of subsets of the rronempt.y set U such that if A, B E a, then
A U B, A fl B C a, and if A C a, then fl C a. For example, the power
set of U, (P(U), is an algebra of sets. However, certain proper subsets of
(p(U) may be an algebra of sets (see Exercise 2.6). If a is an algebra of
sets based on U, then U C a (since if A C a, then U = A U A C a)
and 0 C a (since if A C a, then 0 = A n A E a). Further, Theorem
248
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1.5.1 may be interpreted as a list of properties of an algebra of sets.
That this is a fundamental list of properties is suggested by the variety
of other properties (for example, those in Theorem 1.5.2) which may be
deduced solely from them. As formulated below, the theory of Boolean
algebras may be regarded as the axiomatized version of algebras of sets
when viewed as systems having the properties appearing in Theorem
1.5.1.

A Boolean algebra is a 6-tuplc (B, U, n, ', 0, 1), where B is a set, U is
a binary operation (called union or join) in B, n is a binary operation
(called intersection or meet) in B, ' is a binary relation in B having B
as its domain, 0 and 1 are distinct elements of B, and the following
axioms are satisfied.

(i) Each operation is associative: for all a, b, c C B,

aU (bUc) _ (aUh)Uc and an (bnc) _ (anb)nc.
(ii) Each operation is commutative: for all a, b E B,

aUb=bUa and anb=bna
(iii) Each operation distributes over the other: for all a, b, c C B,

aU (bnc) = (aUb) n (aUc)
and

(iv) For all a in B,
an (bUc) = (anb) U (anc).

aUO=a and and =a.
(v) For each a in B there exists a '-related element a' such that

a U a' = I and ana'=0.
The consistency of the theory that we have just formulated can be

established by choosing for B the power set of a nonempty, finite set U,
taking U and n as set-union and set-intersection, respectively, ' as
complementation relative to If, and, finally, choosing 0 and 1 as 0
and U, respectively. The uniqueness of the elements 0 and I is estab-
lished in Theorem 2.1. These uniquely determined elements are called
the zero element and unit element, respectively, of a Boolean algebra.
It was in anticipation of this uniqueness and terminology that the sym-
bols "0" and "1" were used in the axioms. We might have postulated
their uniqueness; however, we would then be obligated to prove unique-
ness as part of any verification that an alleged Boolean algebra is truly
just that. An element which is '-related to an element a is called a
complement of a; that each element has a unique complement (and,
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hence, that ' is a function having B as its domain) is proved below. The
set of axioms is not independent, since the two associative laws can be
derived from the remaining axioms. A hint as to how this can be done
is given in an exercise accompanying the next section. If the set of
remaining axioms is regarded as having seven members, which is the
case when each of (ii)-(iv) is divided into two parts, then it is an in-
dependent set of axioms. This fact, which is interesting but unimportant,
was established by E. V. Huntington (1904) with appropriate models.

EXERCISES
1.1. Accepting for the moment the fact that the associative laws (i) in the

formulation of the theory of Boolean algebras are redundant, the independence
of the remaining set of seven axioms can be demonstrated by a collection of
seven systems of the form (B, U, n,', 0, 1), one of which satisfies (ii)-(v) ex-
cept the commutativity of U, another of which satisfies (ii)-(v) except the com-
mutativity of n, and so on. For a B having just a few elements, an operation
in B can be defined by means of a "multiplication table," that is, a square array
whose rows and columns are numbered with the elements of B and such that at
the intersection of the ath row and the bth column the composite of a and b
appears. For example, the following two tables define two operations in the set
B = {a, b}.

U I a b n l a b

a

b

a b

b a
a
b

a a

a b

Show that (B, y, n,', 0, 1)-where B = {a, b}, U and n are defined as
above, ' is the relation {(a, b), (b, a)) (that is, a' = b and b' = a), 0 is a and 1
is b-satisfies all of (ii)-(v) except the first half of (iii), thereby demonstrating
the independence of this axiom. Next, show that the system which results from
the foregoing upon substituting the multiplication tables

U

a

b

a b

a b

b b

n
a

b

a b

b a

a b

for U and n establishes the independence of the second half of (iii).
1.2. Construct five other systems which demonstrate the independence of the

other axioms.

2. Some Basic Properties of a Boolean Algebra
,

The properties of a Boolean algebra which are derived in this section
are the abstract versions of the results obtained in Section 1.5 for an
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algebra of sets. The only essential difference is that now the set of
axioms of a Boolean algebra is used in place of the first theorem of that
earlier section.

We begin by describing the principle of duality for Boolean alge-
bras. By the dual of a statement formulated within the framework of
a Boolean algebra is meant the statement that results from the original
upon the replacement of U by n and n by U, I by 0 and 0 by 1. We
observe that each axiom is a dual pair of statements, with (v) regarded
as self-dual. Hence, if 1' is any theorem of Boolean algebras, then the
dual of T is a theorem, the duals of the steps appearing in the proof
of 7' providing a proof of the dual. This is the principle of duality for
the theory at hand; it yields a free theorem for each theorem which
has been obtained, unless that theorem happens to be its own dual.

Turning to theorems of the theory of Boolean algebras, we mention
first the validity of the general associative law and the general com-
mutative law for each operation, as well as the general distributive law
for each operation with respect to the other. Theorem 2.2.2, Exercise
2.2.4, and Exercise 2.2.5 dispose of these matters. The next group of
results, which make up our next theorem, is the Boolean algebra version
of Theorem 1.5.2.

THEOREM 2.1. In each Boolean algebra (B, U, 0, 1) the
following hold.

(vi) The elements 0 and 1 are unique.
(vii) Each element has a unique complement.
(viii) For each element a, (a')' = a.
(ix) 0' = 1 and 1' = 0.
(x) For each element a, a U a = a and a n a = a.

(xi) For each element a, a U 1 = 1 and a n 0 = 0.
(xii) For all a and b, a U (a n b) = a and a n (a u b) = a.

(xiii) For all a and b, (a U b)' = a' n b' and (a n b)' = a' U Y.
Proof. For (vi) assume that Ol and 02 are elements of B such that
a U OL =a and a U 02 = a for all a. Then 02 U Oi = 02 and OL U
02 = 01. By axiom (ii), 02 U 01 = 01 U 02, and, hence, 02 = 01. Thus
there is a single element in B satisfying the first property in (iv). (The
uniqueness of 1 follows by the principle of duality.)

For (vii) assume that a,' and a. are both complements of a. Then

a. = a. U 0, by (iv);
= al U (a 0 a6), since anal = 0;
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= (a'. U a) n (al' U as),
= (a U ai) n (a,' U as),
= 1 n (ai U ai),
_ (al' U ae) n 1,

=
al

U
a,

2)

By a similar proof we get
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by (iii) ;
by (ii);
since a U a,' = 1;
by (ii) ;
by (iv).

az=a'Uat.
Hence, by (ii), a, = aa.

For (viii), by definition of the complement of a, a U a' = 1 and
a n a' = 0. Hence, by (ii), a' U a = 1 and a' n a = 0. That is,
(a')' = a, by (vii).

The proof of (ix) is left as an exercise.
The proof of (x) is the following computation.

aUa=(aUa)n1,
_ (a U a) n (a U a'),
=aU(ana'),
=aUO,
= a,

by (iv) ;
by (v);
by (iii) ;
by (v);
by (iv).

The proofs of the remaining parts of the theorem are left as exercises.

The property of cornpleuientation stated as (vii) means that
{ (a, a')Ia C B) is a function on B into B (that is, complementation is a
unary operation in B). According to (viii) this function is of period 2
and, consequently, one-to-one and onto.

It is possible to introduce into the set B of an arbitrary Boolean
algebra (B, U, n,', 0, 1) a partial ordering relation which resembles
that of set inclusion. The characterization of inclusion in Theorem 1.5.3
in terms of set intersection is the origin of the following definition. If
(B, U, n, ', O, 1) is a Boolean algebra, then for a, b E B

a <b if anb =a.
There is no need to give preference to the meet operation, since, just as
for the algebra of sets,

anb=a if aUb=b.
The proof of this as well as the proofs of such related facts as

a < b iff a nb' = 0 and a < b if b' < a'
are left as exercises. Important features of the new relation are stated in
the next theorem.
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THEOREM 2.2. If (B, U, n, ', 0, 1) is a Boolean algebra, then
(B, <) is a partially ordered set with greatest element (namely, 1)
and least element (namely, 0). Moreover, each pair { a, b } of elements
has a least upper bound (namely, a U b) and a greatest lower bound
(namely, a n b).

The proof is straightforward and is left as an exercise.

EXERCISES
2.1. Referring to Theorems 1.5.2 and 2.1, it is obvious that (viii)-(xiii) of

Theorem 2.1 are the abstract versions of 8, 8'-13, 13' of Theorem 1.5.2. Show
that (vi) and (vii) of Theorem 2.1 are the abstractions of 6, 6' and 7, 7', respec-
tively, of Theorem 1.5.2.

2.2. Supply proofs for parts (ix), (xi), (xii), and (xiii) of Theorem 2.1.
2.3. In regard to a proof of the assertion that the associative laws for U and

n can be derived from the remaining axioms for a Boolean algebra, we observe
first that the given proofs of (vi)-(viii) and (x) do not employ (i). Further, the
proofs of (ix), (xi), and (xii) called for in the preceding exercise need not use (i).
Hence, (ii)-(xii) are available to prove (i). Supply such a proof. Hint: Given
a, b, and c, define

x=aU(bUc) and y=(aUb)Uc,
and then deduce, in turn, that all x = any,a,nx=a'ny,x=y.

2.4. Establish each of the following as a theorem for Boolean algebras.

(a) a<biffaUb=b.
(b) a <biffanb' = 0iffa'Ub = 1.
(c) a<bifb'<a'.
(d) For given x and y, x = y if 0 = (x n y') U (y n x').

2.5. Prove Theorem 2.2.
2.6. Let d be the collection of all subsets A of Z+ such that either A or A is

finite. Show that (a, u, n, ^, 0, z+), where the operations are the familiar
set-theoretical union and intersection, is a Boolean algebra.

Remark. The remaining problems in this section are concerned with a type
of generalization of a Boolean algebra called a lattice. A lattice is a triple
(X, U, n), where X is a nonempty set, U and n are binary operations in X
(read "union" and "intersection," respectively), and the following axioms are
satisfied. For all a, b, c C X,

L,. aU(bUc)_(aUb)Uc, U. an(bnc)_(a() b)flc,
L2. aUb=bUa, U. anb=bna,
L3. (a U b) n a = a, U. (a fl b) U a = a.



254 Boolean Algebras I C11 A P. 6

2.7. State and prove a principle of duality for a lattice.
2.8. Derive the following properties of a lattice.

(a) For all a, a U a = a andafla = a.
(b) For all a, b, the relations a U b = a and a () b = b are equivalent.
(c) For all a, b, the relations a (1 b = a and a U b = b are equivalent.

2.9. Let (X, <) be a partially ordered set such that each pair of elements has
a least upper bound and a greatest lower bound in X. Thus, if we set a U b =
lub {a, b} and a (1 b = gib {a, b}, then U and (1 are operations in X. Prove
that (X, U, fl) is a lattice. Next, prove that, conversely, if in a lattice (X, U, (l)
we define the relation < by a < b if a (1 b = a, then (X, <) is a partially
ordered set such that each pair of elements has a least upper bound (namely,
a U b) and a greatest lower bound (namely, a fl b).

Remark. This result gives, in effect, a second formulation of the axiomatic
theory called lattice theory. Thus, one may think of a lattice in either way. If
the formulation is in terms of <, then, by U and (l, one understands the opera-
tions in Exercise 2.9. If the formulation is in terms of U and fl, then, by <,
one understands the ordering relation defined, again, in Exercise 2.9.

2.10. Let (X, U, fl) and (X', y', fl') be lattices. Show that they are iso-
morphic (using the definition of isomorphism suggested by 12 in Section 5.4)
iff the associated partially ordered sets (X, <) and (X', <') are isomorphic
(using the definition in Section 1.11).

2.11. Show that there are exactly five nonisomorphic lattices of fewer than
five elements and that there are exactly five nonisomorphic lattices of five ele-
ments. (Hint: For this problem it is more convenient to think of a lattice as a
partially ordered set.)

3. Another Formulation of the Theory

The formulation which we have given of the theory of Boolean alge-
bras has much to recommend it. The primitive notions are few, and the
simplicity and symmetry of the axioms lend aesthetic appeal. Moreover,
if the associative laws are omitted, the resulting set is independent.
Finally, the formulation clearly reflects the type of system that moti-
vated it. However, it is always a challenge to see if a formulation can
be pared down in one or more respects. In the case of Boolean algebras
this challenge has been successfully met by a great variety of formu-
lations. We shall describe one that has become quite popular. It achieves
for arbitrary Boolean algebras the analogue of the familiar fact for an
algebra of sets that either of the operations of union and intersection
can be eliminated in terms of the other together with complementation
[for example, A U B = (A n B)) .
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If (B, V, n,', 0, 1) is a Boolean algebra, then B is a set with at least
two distinct members. Moreover, the binary operation fl and the unary
operation ' have the following properties.

fl is commutative.
fl is associative.
For a,binB,ifaflb'=cflc'forsome cinB,then aflb=a.
For a,binB,ifaflb=a,then aflb'=cflc'forallcinB.

The first two properties are axioms, and the last two follow from the
facts that for all c in B,cflc' = 0, andaflb' = 0iffaflb = a. We
shall prove next that a triple (B, fl, ') having the properties mentioned
above (a precise description appears in the next theorem) may be taken
as a formulation of the theory of Boolean algebras. That is, the primitive
notions of the initial formulation of the theory can be defined and the
axioms (i)-(v) can be derived as theorems.

THEOREM 3.1. The following is a formulation of the theory of
Boolean algebras. The primitive notions are an unspecified set B of at
least two elements, a binary operation fl in B, and a unary opera-
tion ' in B. The axioms are as follows.

B1. fl is a commutative operation.
B2. fl is an associative operation.
B3. For all a, b in B, if a fl b' = c fl c' for some c in B, then

aflb=a.
B4. For all a,binB,ifaflb=a,then aflb' =cflc'forallc

in B.
Proof. It remains to prove that the primitive notions of the original
formulation can be defined and the axioms derived from a triple
(B, fl, ') satisfying B1--B4. As the undefined set, the meet operation,
and the binary relation ' of the original formulation we take B, fl,
and ', respectively. A Join operation and the distinguished elements 0
and 1 are defined below. The first ten results (TI-T 10) which we
prove, al.)uut (13, fl, '), together with 13, and 133, establish the validity
of all axioms of the original formulation except the distributive laws.
The remainder of' the proof is concerned with them. A,telegraphic
style of presentation is used for ease in reading.

Ti. afla=a.
Pr. anal = anal. Now apply 113.

T2. afla'=bflb'.
Pr. T1 and 134.
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This result justifies the following definition.

Dl. 0 = a fl a' and 1 = 0'.
T3. an0=0.

Pr. afl0=afl(afla'),
=

(ana)na',

0,
T4. all = 'a.

Pr. 1 . a" l a' = 0,
2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

T5.
Pr.

5.

D2.
T7.

Pr.
T8.

Pr.

T9.
Pr.

TI0.
Pr.

a" fla=a" ,a"" n a" = a.".
al", n a a""
a"', na'=0 ,a' n a". = a'

,a," n a' =
a = a,
ana"'=0 ,ana"a,
a" = a ,

afll =a.
afl(ana')"=0,

afl(afla')'=a,
afll =a,
001.
Assume 0 = 1.

by DI;
by B2;
by TI and DI.

from D1 and B2.
from I by B3.
from 2.
from 2 and 3, by B2.
from 4, by B4 and Dl.
from 5, by B, and B3.
from 2.
from 6 and 7.
from 8 and D1.
from 9 by B3.
from 2 and 10, by B1.

by T4, Ti, and DI,
from the above, by B3.
by Dl.

a fl 0 = a, from 1 and T5.
an0 = 0, by T3.
a = 0, from 2 and 3.
This contradicts the assumption that there exist at least
two distinct elements in B.
a U b = (a'nb')'.
(a U b)' = a' fl b' and (a fl b)' = a'Ub'.

Both follow from D2 and '1'4.
aUb = b U a and a U (b U c) = (aUb)Uc.

The first follows from B2, and the
and T4.
aUa'=1.

This follows from D2, T4, B1, and
aUO=a.

This follows from D2, D1, and T4.

second follows from Ba
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Tll. afl (aUb) =a.
Pr. 1. b' fl (a fl a') = 0, by T3 and Dl.

2. a (l (a' fl b') = 0, from 1, by B, and B2-
3. a fl (a' fl b')" = 0, from 2, by T4.
4. a f l (a' f l b')' = a, from 3, by B3.
5. a f l (a U b) = a, from 4, by D2.

T12. an (anb)'=aflb'.
Pr. 1. aflb"fl(aflb)'=0, by Dl and T4.

2. a fl (a 0 b)' fl b" = 0, from 1, by B1.
3. a fl (a (1 b)' (1 b'

=afl(aflb)', from 2, by B3.
4. a fl b' fl (a fl b)'

=afl(afl1')', from 3, by B1.
5. a flb'fl(aflb)'

= a fl b' fl (b' U a'), by T7 and B1.
6. a fl b'f (b'Ua') =aflb', byTll.
7. a fl(a(lb)'=aflb', from 4, 5, and 6.

T13. a fl c = a, a fl c' =0 and a U c = c are equivalent
properties.

Pr. Left as an exercise.
T14. aflc=aandbflc=bimply (aUb)lc=aUb.

Pr. Assume that a fl c = a and b fl c = b. Then a U c = c and
b U c = c, by T13. By TI 1,

(aUb)fl [(aUb)Uc]=aUb.
Two substitutions within the brackets give the desired
result.

T15. an (bUc) _ (a fl b)U(aflc)and
a U (b fl c) _ (a U b) fl (a U c).

Pr. 1. (a fl b) fl [a fl (b U c) ]
=aflbfl (bUc) =aflb, by B2, Ti, andT11.

2. (a fl c) n [a fl (b U c) ] = a fl c, similarly.
3. [(a fl b) U (a fl c) ] fl [a fl (bUc) ]

= [(a fl b) U (a fl c) ), from 1, 2, and T14.
4. [a fl (bUc) ] fl [(a fl b) U (a U c) ]'

=afl (bUc)fl(aflb)'fl(aflc)',
by T7;

= a ll b' ( c, r) (b U c), by B, and T12;
=afl(bUc)'fl(bUc),
= 0.
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5. [an(bUc)Jn [(a n b) U (a n c) I
=an(bUc), from 4byT13.

6. a n (1 U c)
= (a n b) U (an c), from 3 and 5 by B,.

The proof of the other distributive law is left as an exercise.

The set of axioms in the new formulation of the theory of Boolean
algebras is independent. A proof of this requires the determination of a
system (13, n, ');, which satisfies all the axioms except B i = 1, 2, 3, 4.
Below arc defined four systems which demonstrate the independence of
the axiom with the corresponding label.

(B,) B = (a, b, c J (B2) B = (a, b, c } (B,) B = (a, b }

n I a b c n I a b c n I a b

a a a a a a c b a a b

b a b b b c b a b b b

c a c c c b a c

I
i

a b a a a b

b a b c b b

c c b

(B4) B = (A C v'(Z+) I7+ - A is a finite set).

n is set intersection.
' is defined as follows. We note that for each A in B there exists

a least positive integer a such that [a, the set of all integers x > a, is
included in A. Then A is the disjoint union of [a and A0, a subset of
(1, 2, , a - 2} (unless A = Z+, in which case A = [1). Now we
define A' to be A U [(a + 1), where A is the complement of AD in
(1, 2, , a - 11 (unless A = Z+, in which case A' = [2).

Some hints for the analysis of this example, which establishes the
independence of B4, appear in Exercise 3.2. Possible substitutes for B4
are described in Exercise 3.3.

EXERCISES
3.1. Prove T13 and the remaining distributive law in the proof of Theo-

rem 3.1.
3.2. Regarding the system (B, n, '), which, it is asserted, establishes the

independence of B4, it is clear that B, and B2 hold. Prove that the system
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satisfies B3 but not B4. hint: for B3, show that if C = Co U [c, then C n C' _
[(c + 1), and, if A = Ao U [a and B = Bo U [b, then

AnB'= {(AflB)U[b+l) ifa<b
(Ao n B') U [a if a> b

3.3. Show that each of B6, B6, - - -, B,o defined below implies B4 in the presence
of B,, B2, and B,. Infer that each of B6, B6, - - -, B9 together with B1, B2, and B,
yields a formulation of the theory of Boolean algebras. For some calculations
it is convenient to use the fact that if (B, n, ') satisfies B1, B2, and B3, then
(B, <), where a < b means a n b = a, is a partially ordered set. So prove this
first.

B6. For all a and b, ana'=bnb'.
Bs. For all a, a" = a.
B. There exists in B an element m such that whenever x n m = x, x = M.
Bs. There exists an integer n > 1 such that for all a, the nth iteration of a

under ' is equal to a.
B9. For all a and b, a < b implies b' < a'.
B,o. B is finite.

4. Congruence Relations for a Boolean Algebra

We turn to an examination of an aspect of the two given sets of
axioms for a Boolean algebra that has not been touched on. It is suf-
ficient to consider the second set of axioms, since the reader will readily
see what alterations are required for our remarks to apply to the first
set. When the statements labeled B1, B,, B,, and 134 were introduced, no
mention was made of the precise meaning to be assigned the relation
symbolized by " ="; rather, it was intended that the reader supply his
own version of equality. Suppressing any preconceived notions that we
might have in this connection, let us determine a set of conditions which
are adequate for our purposes. An analysis of the proofs of TI-T15 in
the proof of Theorem 3.1 reveals that the following is a sufficient set
of conditions.

(E) " =" is an equivalence relation.
(S) Let F be an element of the Boolean algebra (B, n, ') resulting

fi-oin elements a, b, - - - of B using the operations in B, and let
a = a,, b = b,, - - -. Then, if P; is an element which results from
F by the replacement of some or all occurrences of a by al, b by
b,, - - -, then F = F,.
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Now (S) can be derived from the following two simple instances of this
substitution principle.

C)
If a = b, then a fl c = b fl c for all c.

( If a = b, then a' = V.

The proof, which we forego, is by induction on the number of symbols
in the element F. Thus (E) and (C) insure (E) and (S), and, hence (E)
together with (C), which are clearly necessary properties of equality,
are also sufficient for our purposes. As such, equality is an instance of a
congruence relation for a Boolean algebra, a notion which we discuss
next.

Before focusing our attentions on congruence relations for Boolean
algebras we make several remarks about this concept in a general set-
ting. When one is presented with, or constructs, some specific mathe-
matical system, there is among its ingredients a "natural" congruence
relation either explicitly or implicitly defined. This means that there is
present an equivalence relation which is preserved under the operations
at hand in the sense suggested by (C) above. Normally one symbolizes
this relation by "_," calls it equality, and uses it without comment.
For example, in the case of sets, the relation is that of set equality; it
is a congruence relation on any collection of sets. If one is attempting to
demonstrate that a particular system (5 has properties BI-B4, he will
interpret the occurrences of the equality sign in these as the natural
equality for 0-L For example, in the verification that ((P(X), f1, ') is a
Boolean algebra, " _" will be taken to denote set equality. In sum-
mary, the equality symbol, as used in B1-B4 need have no absolute
nature, but merely a relative one. It suffices that it stand for some
congruence relation.

We return to the general discussion with the remark that when one
is studying any specific mathematical system (X, - -), there are often
compelling reasons for identifying elements of X which are distinct rela-
tive to the natural congruence relation. This amounts to the introduc-
tion of an equivalence relation p other than the natural one. One then
directs his attention to X/p, whose elements are the p-equivalence
classes, and regards it as the basic set. If p is not merely an equivalence
but a congruence relation, then it is possible to introduce into X/p
faithful analogues of whatever operations and relations are defined for
X. We proceed to discuss this matter in detail for the case of Boolean
algebras.
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Let (B, (l, ') be a Boolean algebra, and let B be a congruence relation
on it; that is, let 0 be an equivalence relation on B such that the following
hold.

(C,) Ifa0b, then a()c0b flcfor all c.
(C2) Ifa8b, then a'8b'.

We shall be concerned solely with proper congruence relations, that
is, those congruence relations different from the universal relation on B.
We now derive from (CI) an instance of the earlier substitutivity
property (S).

(C3) If a O c and bbd, then a ll b U c f d.

For proof, assume that a 0 c and b 0 d. Then a fl b 8 c (l b and b fl c 0
d f1 c, by (Ci). Since the meet operation is commutative and 8 is tran-
sitive, the result follows. The derivation of the dual of (C3) is left as an
exercise. If B/8 is the set of B-equivalence classes if, then in B/8 the
foregoing result (C3) becomes the following.

Ifa=candb=rl,then aflb=cfd.
This means that the relation

(((a,b),a flb)jaCB/8andbCB/8;
is a function on (B/8) X (BIB) into B/8, that is, an operation in B/8.
We shall denote this operation in B/8 by fl and its value at (a, 6) by
a () 6. So, by definition,

afb=a(lb.
Next, it follows directly from (C) that if 'a = b, then a = b . Hence,
the relation {(a, a )Ja C B/8} is a function on B/e into B/8. We denote
this function by ' and its value at a by a'. So, by definition,

a = W.
It is a straightforward exercise to verify that (B/8, (l, ') is a Boolean
algebra. For example, to verify B3, assume that a fl b' = c f) c'. Then,
in turn,

anb cflc, by definition of x';
a fT b' = c (1 c , by definition of To fl y;
afb'8cflc', xeyiffx=y,
(a n b')' 0 (c (1 c')', by (Ca) ;
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W U b 0 1,

(a'Ub) fl a01 (l a,
an boa,
anb=a,
anb=a,

Boolean Algebras CHAP. 6

by property of (B,
by (C1) ;
by property of (B, fl, ');
x =yiffxey;
by definition of x fly.

In summary, we have shown that from a Boolean algebra (B, f), ')
and a proper congruence relation 0 on it one may derive a Boolean
algebra (B/0, f), ') whose elements are 9-equivalence classes and whose
operations are defined in terms of those of the original algebra using
representatives of equivalence classes. If 0 is different from the equality
relation in B, then the derived algebra may be essentially different from
the parent algebra. This is true in the first of the following examples.

EXAMPLES
4.1. Consider the Boolean algebra (D'(Z), fl, ') whose elements are the sub-

sets of Z, the set of integers. J We recall the definition of the symmetric differ-
ence, A + B, of two sets as the set of all objects which are in one of A and B
but not both. For A and B in 61(Z) let us define A 0 B to mean that A + B
has a finite number of elements. It is easily verified that 0 is an equivalence
relation on 6'(Z). Further, if A 0 B, then A f l CO B (-l C, since, for all A, B,
and C,

(AfC)+(BfC)=(A+B)() C,
and, hence, if A + B is finite, then so is (A fl C) + (B fl C). Finally, if A 0 B,
then A' 0 B', since A + B = A' + B'. Thus, 0 is a proper congruence relation
on the given algebra, and a new Boolean algebra whose elements are B-equiv-
alence classes results on defining

3o 3=AflB and 4'=A.
That a substantial collapse of elements has taken place on transition from the
first to the second algebra is indicated by the fact that, in the first the zero
element is 0, whereas in the second the zero element, Qf, is the collection of all
finite subsets of Z.

4.2. The symmetric difference operation used in the preceding example can
be defined in any Boolean algebra. By the symmetric difference of elements
x and y of a Boolean algebra, symbolized x + y, we understand the element

(xflY')U(x'fly).
It is an easy exercise to prove that this operation is commutative, associative,
and nilpotent (x + x = 0). Other properties which we shall need later are

f We prefer to use prime symbols to denote the operation of complementation relative to
Z in this example, so the bar symbol will be available to denote equivalence classes.



6.4 I Congruence Relations for a Boolean Algebra 263

x+0=x,
(x+y)nz= (xnz)+(ynz),

x'+y'=x+y.
Further, since the symmetric difference is defined in terms of union, intersection,
and complementation, if' O is a congruence relation on a Boolean algebra, then
x 0 y implies that x + z 0 y+ z.

At this point it becomes desirable to simplify our notation by identi-
fying an algebra simply by its basic set. Thus, we shall use the phrase
"the Boolean algebra B" in place of "the Boolean algebra (B, n, ')."
Let us consider now the relationship of a Boolean algebra B/0 to the
algebra B from which B/0 is derived using a proper congruence relation.
Let p be the natural mapping (see Section 1.9) on the set B onto the
set B/0, that is, the mapping

p: 13 -*- B/0, where p(b) = b.

Since anb =a-7)_b and 27' = a-7,

1)(a n b) = p(a) n p(b) and p(a') _ (p(a))'.

That is, p is a "many-to-one" mapping (unless 0 is the equality relation
on B) which preserves operations. A mapping g on one Boolean algebra,
B, onto another, G, which takes meets into meets and complements into
complements, that is,

g(a n b) = g(a) n g(b),
g(a') = (g(a))',

is called a homomorphism of I3 onto C, and C is called a homomorphic
image of B. If, in addition, g is one-to-one, then g is called an iso-
morphism of B onto C. If g is an isomorphisin of B onto C, then g-'
(which exists) is easily proved to be an isomorphism of C. onto B, and
each algebra is called an isomorphic image of the other and each is
said to be isomorphic to the other. Returning to the case at hand, we
may say that p is a hornonrorphisrn and 13/0 is a homomorphic image
of B. That is, each proper congruence relation on a Boolean algebra
determines a homomorphic image. Conversely, each homomorphic im-
age C of a Boolean algebra B determines a proper congruence relation
on B. Indeed, if f: B -} C is a homomorphism, then the relation 0
defined by a 0 b iff f(a) = f(b) is a proper congruence relation on B.
The proof is left as an exercise. We continue by showing that BIB, the
algebra of 0-equivalence classes, is isomorphic to C. For this we introduce
the relation g, which is defined to be
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((x,f(x))Iz C B/0}.

It is easily seen that g is a function which maps B/0 onto C in a one-to-
one fashion and that

g(x n y) = g(x -n Y) = f(x n y) = f(x) n f(y) = g(Y) n g(y),
g(x') = g(x`) = f(x') = U(x))' _ (g(X))',

that is, g is an isomorphism. Moreover, if p is the natural mapping on B
onto B/0, then we observe that for the given homomorphism f : B -- C
we have f = g o p. The next theorem summarizes our results.

THEOREM 4.1. Let B be a Boolean algebra and 0 be a proper
congruence relation on B. Then the algebra B/0 of 0-equivalence
classes is a homomorphic image of B under the natural mapping on B
onto B/0. Conversely, if the algebra C is a homomorphic image of B,
then C is isomorphic to some B/0. Moreover, if f : B -->- C is the homo-
morphism at hand, then f = g e p, where p is the natural mapping
on B onto B/0 and g is an isomorphism of B/0 onto C.

It should be clear from the foregoing results that the homomorphisms
(onto) of a Boolean algebra are in one-to-one correspondence with the proper con-
gruence relations on the algebra. The importance of the role which proper
congruence relations play suggests the problem of practical ways to
generate them. One way is provided by a distinguished type of subset
of a Boolean algebra, which we define next. A nonempty subset I of a
Boolean algebra B is called an ideal iff

(i) x C I and y Cl imply x U y C 1, and
(ii) x C I and y C Bimply xnyC I.

For example, if a C B, then {x C Bl x < a } is an ideal; this is the
principal ideal generated by a, symbolized (a). To show that (a) i§,

an ideal, we note that if x C (a) and y C (a), then a is an upper bound
of {x, y } and, consequently, is greater than or equal to x U y, the least
upper bound of x and y (see Theorem 2.2). Thus, x U y C (a). Finally,
if x C (a) and y C B, then x n y < a, since x < a. Two trivial ideals of
B, namely, 101 and B, are both principal; indeed, 101 = (0), and
B = (1). The ideal (0) is the zero ideal, and the ideal (1) is the unit
ideal of B. An ideal of B which is different from B is called a proper
ideal. The relationship between, proper ideals of B and proper con-
gruences on B is given in the following theorem.



6.4 I Congruence Relations for a Boolean Algebra 265

THEOREM 4.2. If 0 is a proper congruence relation on a Boolean
algebra B, then I = { x C BIx 0 0 } is a proper ideal of B and x O y
if x + y C I. Conversely, if I is a proper ideal of B, then the relation 0
defined by x O y if x + y C I is a proper congruence relation on B
such that I = { x C Bjx 0 0). Thus, the proper congruence relations
on B are in one-to-one correspondence with the proper ideals of B;
each 0 corresponds to the ideal I of elements 0-related to 0.

Proof. Let 0 be a proper congruence relation on B and let I =
{ x C Bjx 0 0 1. Then I C B and, if x, y C I, then, in turn,

x00, x'01, x'ny'01 ny', x'ny'Oy', xUy0y.
The last fact, when combined with y 0 0, implies that x U y 0 0, which
proves that I satisfies the first of the defining conditions for an ideal.
Next, let x C I and y C B. Since x 0 0 implies x n y 0 0, the second
condition is also satisfied, and I is an ideal.

We prove next that x 0 y if x + y C I. Let x + y C I; that is,
x + y 0 0. Then (x +,y) + y 0 0 + y, and hence x 6 y (where we have
used properties of the symmetric difference stated in Example 4.2).
Conversely, x 0 y implies that x+ y 0 y+ y; that is, x + y 0 0.

Turning to the converse of the foregoing, let I be an ideal of B
and define 0 as stated in the theorem. Then 0 is reflexive (since
x + x = 0 C I), symmetric (since x + y = y + x), and transitive
(since the symmetric difference of two elements of I is in I). Further,
x O y implies that x fl z o y fl z, since if x 0y, then, in turn, x +y C I,
(x + y) n z C I, and (x n z) + (y n z) C I. Finally, x 0 y implies
that x' 0 y', since x + y = x' + y'.

To complete the proof of the converse we must show that x 0 0
if x E I. This follows from the identity x + 0 = X.

From the two preceding theorems there follows the existence of a
one-to-one correspondence between the homomorphisms of a Boolean
algebra and its proper ideals. If f is a homomorphism of an algebra B
onto an algebra C, the associated ideal I, which is called the kernel
off, is the set of all elements of B which f maps onto the zero element
of C. If 0 is the congruence relation on B that corresponds to 1, then we
will often write

B/I
instead of "B/O," and call the algebra so designated (an isomorphic
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image of C.) the quotient algebra of B modulo I. If f is an isomorphism,
then 0 is the equality relation on B and I is the zero ideal. Conversely,
it is clear that if the kernel of a homomorphismf can be shown to be the
zero ideal, then f is an isomorphism. Therefore, a homomorphism is an
isomorphism iff its kernel is the zero ideal.

We conclude this section with several general remarks about homo-
morphisms. Since the operations of union and symmetric difference and
the ordering relation are expressible in terms of intersection and comple-
mentation, it follows that a homomorphism of a Boolean algebra pre-
serves each of the former. Further, the fact that if f is a homomorphism,
then f(a () a') = f(a) l (f(a))', implies that f(O) is the zero element of
the image algebra. By a dual argument, f(1) is the unit element of the
image algebra.

EXERCISES

4.1. Prove the dual of property (Ca) for a congruence relation 0, namely,
(Ca)' IfaOcandb8d,then aUbBcUd.

4.2. Complete the proof of the assertion in the text that (B/B, is a
Boolean algebra if (B, 1, ') is a Boolean algebra and 0 is a proper congruence
relation on B.

4.3. Prove that the symmetric difference operation has the properties stated
in Example 4.2.

4.4. Prove that if g is an isomorphism of the Boolean algebra B onto the
Boolean algebra C, then g-' is an isomorphism of C onto B.

4.5. Prove the assertion prior to Theorem 4.1 that if f : B -- C is a homo-
morphism, then the relation 0 defined in B by a B b if f (a) = f (b) is a proper
congruence relation on B. Further, prove that f = g o p, where g and p are the
mappings defined in the text.

4.6. Prove the assertion following Theorem 4.1 that the homomorphisms
(onto) of a Boolean algebra B are in one-to-one correspondence with the proper
congruence relations on B.

4.7. Draw the diagram of the algebra (t; of all subsets of {a, b, c, d}. Locate
the members of the ideal ({a}) on the diagram. Then use the diagram to deter-
mine the B-equivalence classes of the relation B corresponding to ({a}) in accord-
ance with Theorem 4.2. Finally, draw the diagram of the algebra a/B.

4.8. In the next section an atom of a Boolean algebra is defined to be nonzero
element a such that if b < a, then either b = 0 or b = a. Show that there are
no atoms in the Boolean algebra of equivalence classes defined in Example 4.1.

4.9. Referring again to Example 4.1, let A 01 B mean that A 0 B and that 3
is not a member of A + B. Prove that Bt is a congruence relation on P(Z).
Determine the atoms of'P(Z)/Bi.
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5. Representations of Boolean Algebras

The set-theoretical analogue of our second formulation of the theory
of Boolean algebras is that of an algebra of sets. Since it was essentially
the structure of such a system that motivated the creation of the axio-
matic theory under discussion, an obvious representation problem arises :
Is every Boolean algebra isomorphic to an algebra of sets? This we can
answer in the affirmative.

We shall begin with the case where the set B has a finite number of
elements, although our first definition is applicable to any Boolean
algebra. An element a of a Boolean algebra is an atom if a 0 and
b < a implies that either b = 0 or b = a. For x in B let A(x) denote the
set of all atoms such that a < x. We next derive several properties of
atoms and of the sets A(x) for the case of an algebra (B, n,') such that
B is finite.

A,. If x 0 0, there exists an atom a with a < x.

Proof. This is a direct consequence of the finiteness assumption. The
details are left as an exercise.

A2. If a is an atom and x C B, then exactly one of a < x and
an x= 0 holds. Alternatively, exactly one of a < x and a < x' holds.
Proof. Since a n x< a, either an x= a or a n x= 0. Moreover,
both cannot hold, since a 0.

A3. A(x n y) = A(x) n A(y).
P r o o f. First we note that x n y is the meet of two elements in B,
and A(x) n A(y) is the set of those elements common to A(x) and
A(y). Now, assume that a C A(x n y). Then a< x n y, and hence
a< x and a< y. Thus a E A(x) n A(y). hence A(x n y) 9A(x) n
A(y). Reversing the foregoing steps establishes the reverse inequality,
and hence equality.

A4. A(x') = A(1) - A(x).
Proof. First we note that A(1) is the set of all atoms of B. Now let
a C A(x'). Then, by A2, it is false that a C A(x). Hence, a E A(1) -
A(x). Conversely, if a E A(1) - A(x), then a V A(x). Hence, by A2,
aEA(x').
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A5. A(x) = A(y) iff x = y.

Proof. Assume x 0 y. Then at least one of x < y and y < x is false.
Suppose that x < y is false. Then x n y' F6 0, so that by Al there
exists an atom a< x n y'. By A3, a C A(x) and a C A(y'). Thus,
a C A(x) and, by A4, a V_ A(y). Hence, A(x) 0- A(y). The same con-
clusion follows similarly if it is assumed that y < x is false.

A6. If al, 612, , ak are distinct atoms, A(al U a2 U . . . U ak) _
{ai, a2, ..., a&}.

Proof. Clearly, jai, all, , ak} C A(ai U a2 U U ak). For the con-
verse, assume that a CA (a, U a2 U U ak) and a 5-6 a;, i = 1,
2, , k. Then, by A2, a n ai = 0, i = 1, 2, , k., and hence a =
af(aIUall U...Uak)= (anal)U(a(l a2)U...U(af ak) =0,
which is impossible.

THEOREM 5.1. Let B be a Boolean algebra of n elements. Then
B is isomorphic to the algebra of all subsets of the set of atoms of B.
If m is the number of atoms of B, then n = 2"`.

Proof. Let T be the set of m atoms of B. Then the mapping A :
B -N 6'(T) is one-to-one by A5 and onto 6'(T) by A5. According to A3,
the image of a meet in B is the meet of the corresponding images in
6'(7). According to A4, the image A (x') of x' is the complement of the
image of x, that is, the relative complement of A(x) in 7'. Thus, A is
an isomorphism.

Then n = 2"' follows from the fact established earlier that the
power set of a set of m elements has 2" members.

COROLLARY. Two Boolean algebras with the same finite number
of elements are isomorphic.

The proof is left as an exercise.

EXAMPLE

5.1. For B we choose {1, 2, 3, 5, 6, 10, 15, 30}, the set of divisors of 30. For
a and b in B define a n b as the least common multiple of a and b and a' as
30/a. It is an easy matter to verify that (B, n,') is a Boolean algebra. The
partial ordering relation introduced for the elements of a Boolean algebra takes
the following form for this algebra: a <.b ifFa is a multiple of b. Thus, 30 is the
least (and zero) element, and 1 is the greatest (and unit) element of the algebra.
The atoms are 6, 10, and 15, and, consequently, the algebra is isomorphic to
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that determined by all subsets of {6, 10, 15} with the usual operations. The
mapping which establishes this isomorphism matches 2 with {6, 10} and 30
with 0, for example. It is left as an exercise to verify that a U b, which in our
second formulation of a Boolean algebra is defined as (a' (1 b')', is the greatest
common divisor of a and b. Thus, if at the outset we had introduced in B, along
with the operation (l, a second binary operation U by defining a U b as the
greatest common divisor of a and b, the outcome would have been the same.
However, in the process we would have had to verify the distributive laws,
which, in this case, is not a particularly simple matter.

Before continuing with the representation theory we urge the reader
to pause and reflect on the extent to which Theorem 5.1 clarifies the
structure of finite Boolean algebras (that is, algebras having a finite
number of elements). Indeed, it leaves nothing to be desired in the
way of a representation theorem. Possibly its definiteness, both with
respect to its arithmetical aspect and the inclusion of an explicit recipe
for constructing the asserted isomorphism, will be more fully appreciated
when the corresponding result for the infinite case is obtained. For this,
a different approach must be supplied, since there exist Boolean algebras
without atoms (see Exercise 4.8). In the infinite case the substitute for
an atom is a distinguished type of ideal, which we describe next. Let
S be the set of all proper ideals in the Boolean algebra B. Since 10 } C S,
it is nonempty. Further, the members of S may be characterized as the
ideals of B which do not contain 1. As is true of any collection of sets,
S is partially ordered by the inclusion relation, and the concept of a
maximal element of S is defined. A maximal element of S is a maximal
ideal of B. The existence of maximal ideals in an infinite Boolean alge-
bra is secured by an application of Zorn's lemma.

THEOREM 5.2. Maximal ideals of a Boolean algebra exist. In-
deed, there exists a maximal ideal which includes any preassigned
proper ideal.

Proof. We consider the partially ordered set (S, C) defined above.
If a is a simply ordered subset of S, then the union, A say, of the
collection e is clearly an upper bound for t°. It is a straightforward
exercise to verify that A is an ideal. Moreover, A C S, since 1 appears
in no member of e and, consequently, does not appear in A. Thus,
since every chain in S has an upper bound in S, Zorn's lemma may
be applied to conclude the existence of a maximal element. The same
argument when applied to (I C SII ? J), where J is a given proper
ideal, yields the existence of a maximal element which includes J.
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We prove next a sequence of theorems about maximal ideals of a
Boolean algebra B which closely parallels that derived earlier for atoms.

M,. If x 1, there exists a maximal ideal P with P (x) or,
what amounts to the same, x C P.

Proof. This follows directly from the final statement of Theorem 5.2,
choosing. (x) as the given ideal.

M2. For each maximal ideal P and each element x of B, exactly
one of x C P and x' C P holds.
Proof. We note first that for no x is x C P and x' C P, since it would
then follow that 1 (= x U x') C P, which is impossible. Now assume
that x (Z P, and consider the set Q of all elements of B of the form
b U p with b< x and p C P. Then Q is an ideal, since

(i) (b, U p,) U (b2 U P2) _ (b, U b2) U (p' U P2) = b3 U Pa, and
(ii) if y C B, then (b U p) n y = (b n y) U (p n y) = b, Up,.

Also, P C Q, since, clearly, P C Q and x C Q, while x (Z P. Thus,
Q = B, since P is maximal. Hence, for some b < x and p C P,
b U p = 1. It follows that x U (b U p) = x U 1, or x U p = 1. Then

X ,

By the second part of the definition of an ideal it follows that x' C P.

To continue with the derivation of properties of maximal ideals which
parallel, in a complementary sort of way, those for atoms, we introduce
the analogue of the sets A (x). If x C B, let M(x) be the set of all maximal
ideals P such that x V- P or, what amounts to the same by virtue of M2,
x' C P. The sets M(x) have the following properties.

Ma. M(x n y) = M(x) n M(y).
Proof. Let P C M(x n y). Then (x n y)' = x' U Y, C P. Since x' _
x' n (x' U y') and y' = y' n (x' U y'), it follows that x' C P and
y' C P. Hence P C M(x) and P C M(y), or P C M(x) n M(y). Since
each of these steps is reversible, the asserted equality follows.

M4. M(x') = M(1) - M(x), where M(1), is the set of all maximal
ideals of the algebra.

Proof. We have P C M(x') iff,x' V- P iff x C P iff P C M(1) - M(x).

Mb. M(x) = M(y) iff x = Y.
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Proof. Assume x /- y. Then at least one of x < y and y < x is false.
It is sufficient to consider the consequences of one of these. Let us
say y < x is false. Then x U y' s 1, so there exists a maximal ideal P
such that x U Y' C P. Now (x U y')' = x' n y (Z P, and, hence, by
M3, P C M(x') and P C M(y), or P (Z M(x) and P C M(y). Thus,
M(x) 54 M(y).

The promised representation theorem follows easily from M,-M5. It
is valid for an arbitrary Boolean algebra, but, in view of the more precise
result for finite algebras, it is of interest only in the infinite case. The
first proof of this result was given by the American mathematician,
Marshall Stone (1936).

THEOREM 5.3. Every Boolean algebra B is isomorphic to an
algebra of sets based on the set of all maximal ideals of B.

Proof. Let JR denote the collection of all sets of ideals of the form
M(x) for some x in B. According to M3 and M,, :l is an algebra of
sets. The mapping M: B - - :711 is onto by the definition of mz and
one-to-one by M5. Finally, in view of M3 and M1, M is an isomorphism.

With the representation theorem for the finite case in mind, it is
natural to ask whether the above result cannot be sharpened to read,
"Every Boolean algebra is isomorphic to the algebra of all subsets of
some set." To discuss this matter we make two definitions. A Boolean
algebra B is called atomic if for each nonzero element b of B there
exists an atom a of B with a < b. A Boolean algebra B is called com-
plete if for each nonempty subset A of B, lub A exists relative to the
standard partial ordering of B. This definition has significance only
when A is infinite, since in any Boolean algebra each pair, and con-
sequently each finite set of elements, has a least upper bound. Now it
is clear that the algebra of all subsets of a set is both atomic and complete.
It is left as an exercise to prove that each of these properties is preserved
under an isomorphism. Hence, an algebra which fails to have either
property cannot be isomorphic to an algebra of all subsets of a set.
Since, as noted earlier, the algebra described in Example 4.1 is not
atomic, the question in mind is settled in the negative. The same
conclusion is provided by the algebra defined in Exercise 2.6, since, as
the reader may prove, it is not complete.

The above pair of conditions which are necessary in order that a
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Boolean algebra be isomorphic to the algebra of all subsets of a set are
also a sufficient set. This is our next theorem.

THEOREM 5.4. Necessary and sufficient conditions that a Boolean
algebra be isomorphic to the algebra of all subsets of some set are
that B be complete and atomic. In this event, B is isomorphic to the
algebra of all subsets of its set of atoms.

Proof. Since the necessity of these conditions has already been ob-
served, we turn to a proof of their sufficiency. Suppose, therefore,
that B is complete and atomic and let 7' be the set of all atoms of B.
As in the proof of the finite case, let A(x) denote the set of atoms a for
which a < x. Then, exactly as in the finite case, it can be proved that
the mapping A on B into 01(T) has properties A3 and A4 (now, of
course, property A, is an assumption). This means that A is a homo-
morphism on B onto an algebra of subsets of 7'. If U is an arbitrary
subset of T, then, by the assumed completeness, U has a least upper
bound, u say, in B. Then A(u) = U (this is a generalization of A6 for
the finite case), so A is onto U'(7').

All that is needed to complete the proof is to show that A is one-
to-one-that is, that the kernel of A is the zero ideal. This follows
from the atornicity of B; if x P6 0, then A(x) s 0, so A(x) _ 0
ifl'x=0.

EXERCISES
5.1. Prove property A, of atoms in a finite Boolean algebra.
5.2. Prove the Corollary to Theorem 5.1.
5.3. Referring to Example 5.1, verify that the set of divisors of 30 determine

a Boolean algebra. Verify that in this algebra a U b is the greatest common
divisor of a and b.

5.4. Referring again to Example 5.1, show that the set of divisors of any
square-free integer determines a Boolean algebra in exactly the same way as
does the set of divisors of 30. What does this result imply regarding the number
of divisors of a square-free integer?

5.5. (a) Prove the converse of property M2 of maximal ideals to obtain a
characterization of maximal ideals among the set of proper ideals.

(b) Prove that maximal ideals can also be characterized as those ideals
I of a Boolean algebra B such that B/I has just two elements.

5.6. (a) In Exercise 2.6 there is defined the Boolean algebra d of all subsets
A of Z} such that either A or A is finite. Prove that the collection e
of all finite subsets of _L+ is a maximal ideal of a.
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(b) The same collection a is an ideal of the algebra tP(Z+). Prove that e
is not a maximal ideal of this algebra and determine a maximal
ideal which includes C.

5.7. Devise a proof of Theorem 5.3 for the case of a denumerable Boolean
algebra B that does not employ Zorn's lemma. (Hint: Prove by induction that
if B is denumerable then there exists a maximal ideal which includes any pre-
assigned ideal.)

5.8. Prove that the Boolean algebra in Exercise 5.6(a) above is not complete
by showing that the collection of all unit sets of positive even integers has no
least upper bound.

5.9. Prove that an isomorphic image of a complete Boolean algebra is com-
plete and that an isomorphic image of an atomic algebra is atomic.

5.10. Prove that every ideal of a Boolean algebra B is principal iff' B is finite.
(Note: The proof that B is finite if every ideal is principal is difficult.)

6. Statement Calculi as Boolean Algebras

Statement calculi, as described in Section 4.3, yield models of the
theory of Boolean algebras. One need merely restrict his attention to
the algebraic character of a statement calculus as we now discuss it.
According to Section 4.3, the core of a statement calculus is a non-
empty set So of statements. This set is extended to the smallest set S of
statements (that is, formulas) such that the negation of each member of
S is a member of S and each of the conjunction, disjunction, conditional,
and biconditional of any two members of S is a member of S. Since it
was observed that the disjunction, conditional, and biconditional of two
statements can be defined in terms of negation and conjunction, we may
and shall assume that S is simply the closure of So with respect to these
connectives. Then A takes on the role of a binary operation in S and '
(which we shall use as the symbol for negation) that of a unary operation
in S.

In order to state precisely the structure of the system (S, A, '), that is,
the set S together with its two operations, we must decide on the "nat-
ural" congruence relation for it. The obvious choice is the eq relation.
With the adoption of eq as the equality relation on S we assert that
(S, A, ') is a Boolean algebra. For proof we note first that eq is a proper
congruence relation for the system. Indeed, we already know that it is
an equivalence relation and, using truth tables, it is an easy matter
to prove that A eq B implies that (A A C) eq (B A C) and A' eq B'.
Moreover, it is a straightforward exercise to verify that Bt-B4 of The-
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orem 3.1 are satisfied; that is, (A A B) eq (B A A), and so on. The
zero element of the Boolean algebra (S, A, ') is A A A' for any for-
mula A, and the unit element is (A A A')'. Frequently the result which
we have obtained is stated as "The statement calculus under the con-
nectives `and' and `not' is a Boolean algebra." This is somewhat mis-
leading, since there is a statement calculus for each set So. Actually, it
is only the cardinal number of So that matters; two calculi for which
the respective sets of basic statements have the same cardinal number
differ only in verbal foliage. Thus, a more accurate assertion, in the
sense that it recognizes the existence of different statement calculi and
the congruence relation employed, is "A statement calculus under the
connectives `and' and `not' is a Boolean algebra with respect to equiv-
alence." The Boolean algebra obtained from a statement calculus by
the identification of equivalent formulas will be called the Lindenbaum
algebra of that statement calculus. Such algebras are discussed in the
next section.

7. Free Boolean Algebras t

The preceding section provides the genesis of a method for construct-
ing, in a purely formal way, a Boolean algebra from any nonempty set.
This involves the use of congruence relations in a way which extends
that described in Section 4. Let us dispose of this matter first.

In Section 4 the rough assertion was made that if (X, . ) is a mathe-
matical system and p is a congruence relation for it, then, corresponding
to each operation (or relation) in X, there can be defined in X/p an
operation (or relation) having all the properties of the original. (This
was stated precisely and proved in the case of a Boolean algebra.) Now
it can happen that the resulting system with X/p as basic set has addi-
tional properties besides those inherited from the original system. In-
tuitively, this seems quite plausible; if X is collapsed appropriately,
irregular behavior present in the original system may be smoothed out
in the derived one. An instance of this occurs below; a system which
has some requisites of a Boolean algebra is forced into determining one
by introducing a suitable congruence relation.

The system with which we begin is the abstraction of the most ob-
vious features of an intuitive statement calculus. We proceed with its

f In the remainder of this chapter there are several forward references to Section 9.2. A
mere perusal of that section will suffice for an understanding of the applications to be made
to Boolean algebras.
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definition. Let So be an arbitrary nonempty set and A and ' be two
symbols which do not designate elements of So. We give an inductive
definition of a set S whose elements are certain finite sequences of ele-
inents of So U I A, '} together with parentheses.

(1) If s C So, then s C S.
(II) If I C S, then (t)' C S.

(III) If s, t C S, then (s) A (t) C S.
(IV) The only members of S are those resulting from a finite number

of applications of (1), (II), and (III).

As a direct consequence of the definition of S we may regard A as
a binary operation in S and ' as a unary operation in S. In these formal
circumstances the natural congruence relation for the system (S, A, ') is
that of elements having identical form. As such, (S, A, ') is surely not a
Boolean algebra. Can a congruence relation be defined for the system
such that a Boolean algebra will result? On the basis of the discussion
in Section 4, necessary and sufficient conditions which such a relation 0
must satisfy are that it be an equivalence relation different from the
universal relation on S (the latter requirement reflects the fact that a
Boolean algebra has more than one element) and that the following hold
for all elements of S.

Ifs0t,then sAu01Auforallu.f
Ifs 01, then s' 01'.

(C) sA101As.
sA (t Au)0(sAt) Au.
IfsA1'0uAu'forsome u,then sA10S.
IfsA10s,then sA1'OuAu'forallu.

In defense of our assertion we note that the first two parts of (C) are
necessary and sufficient conditions that the operations in S induce opera-
tions in S/0 in a natural way, and the remaining four parts constitute a
minimal set of conditions which insure that the resulting system is a
Boolean algebra. Parenthetically, we remark that at times, when an
equivalence relation satisfying (C) is introduced into (S, A, '), it is more
natural to continue with the elements of S (instead of those of S/0) as
the basic objects. This attitude is reflected in referring to the system
(S, A, ') as a Boolean algebra with respect to 0.

There is no question concerning the existence of equivalence rela-
t Here we begin to follow the usual mathematical conventions of omitting superfluous

parentheses.



276 Boolean Algebra.s I CH A P. 6

tions satisfying (C), since if members of S are interpreted as truth func-
tions, then, as observed in the preceding section, the eq relation satis-
fies (C). We consider now the set e of all equivalence relations satisfy-
ing (C) and let µ denote the intersection of the collection e. It is left
as an exercise to prove that µ C C and, consequently, is the smallest
member of ('0, in the sense that it relates the fewest possible pairs of ele-
ments of S. The Boolean algebra S/µ is called the free Boolean algebra
generated by So. In this context the word "free" is intended to suggest
that the elements of the algebra are as unrestricted as is possible if they
are to have the structure of a Boolean algebra. Intuitively this is clear,
since the only relations which have been imposed upon them are a
necessary and sufficient set to insure that they do have that structure.
There are alternative definitions of a free Boolean algebra that are more
exotic; our old-fashioned one has the merit that it simultaneously dis-
poses of the existence of such algebra.-,.

For an application in the next section, we note the relationship of
the algebra S/0 determined by an arbitrary member 0 of e to S/µ. Since
s µ I implies s 0 1, a 0-equivalence class is a union of pt-
equivalence-classes. Thus it is possible to define a mapping f on S/µ onto S/0 by

{
J [S]B.

That is, the image of the µ-equivalence class determined by s is the
0-equivalence class determined by s. Clearly, f is a homomorphism
onto S/0; for example, the calculation

f([s]µ A [1]µ) = f([s A 1]µ) _ [s A 1]e = [s]e A [1]e

shows that f preserves intersections. Since the zero element of S/µ is
[u A u'],, for any u in S, the zero element of S/0 is [u A u']e.

It is possible to give an interesting characterization of the congruence
relation u. To this end we consider the µ-equivalence class

`U = [ (u A u')'],,

for some u in S. This class is independent of u since it includes all mem-
bers of S having the same form. This follows from the fact that if 0 C 0;
then (s A s')' 0 (u A u')' for all s in S, and hence (s A s')' µ (u A u')'
for all s in S. Since the zero element of S/µ is [u A u'],,, `U is the unit
element of S/µ. It is left as an exercise to prove that if s, I E S, then

s µ 1 if (s A 1')' A (s' A 1)' C `U
or, introducing s E-' 1 as an abbreviation for (s A t')' A (s' A t)',

SJA 1 if SHIC`U.
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This characterization of µ in terms of 't) is opaque until S is interpreted
as the set of formulas of a statement calculus. Then it will be recognized
that p is to be interpreted as the eq relation and that `U becomes the set
of valid formulas of S. Finally, the characterization of u in terms of V
is simply the formal version of Theorem 4.3.2 (namely, s eq t if 1= s H t).

The same interpretation of S suggests, as an alternative approach to
the definition of the free Boolean algebra generated by So, the introduc-
tion of the set co first, followed by the definition of p in terms of U. This
is possible using some formulation of a statement calculus as an axiomatic
theory. The starting point is the inductive definition of the set Sin terms
of the elements of So U (A, '}, just as before. We now wish to obtain
the set `U as that subset of S which, under the interpretation of S, con-
stitutes the tautologies. This is possible using the results of Section 9.2.
Introducing s -> I as an abbreviation for (s A t')', we define a subset V
of S as follows.

(I) Any member of S that has one of the following three forms is a
member of V:

s -, (t ---> .s),
(u --> (s ((u -' s) -, (u --, l))(ss).

(II) If s and t arc members of S such that both- s and s t are
members of V, then t is a member of V.

(III) An clement of S is a member of v iff it can be accounted for
using (I) or (II).

The desired conclusion, that `U = V, is then secured via the com-
pleteness theorem (Theorem 9.2.3) and its converse (Theorem 9.2.4). In
terms of V, the relation µ may now be defined by

soul if s - IC V.
Although statement calculi served as our inspiration for introducing

the concept of a free Boolean algebra, now that the latter concept has
been firmly established, we may turn matters around and describe the
Lindenbaum algebra of a statement calculus as simply the free Boolean
algebra generated by the set of prime formulas of the calculus in
question.

EXERCISES

7.1. Show that the relation µ is a member of C.
7.2. Show that sµl iffsHl C U.
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7.3. Investigate the question of whether or not the algebra of all subsets of a
set X is a free Boolean algebra.

8. Applications of the Theory of Boolean Algebras
to Statement Calculi

It is by way of the Lindenbaum algebra of a statement calculus that
the techniques and results of the theory of Boolean algebras can be
applied to the study of statement calculi. The applications include
elegant characterizations of various concepts that arise in the study of
statement calculi and simple proofs of important metatheorems, as we
shall show in this and the next section.

We begin by analyzing the theory of deducibility for statement calculi
in terms of the theory of Boolean algebras. The first step is to obtain a
characterization of the algebraic structure of a statement calculus when
a set of formulas is singled out to serve as a set of assumptions. For this
let us consider the formal analogue of a statement calculus as described
in the preceding section; that is, let us consider the system (S, A, ')
generated by the set So. In it we imitate the designation of a set of
formulas of a statement calculus as a set of assumptions by selecting a
subset r of S and adjoining to the set (C) of conditions given earlier
one of the form

a0(u Au')'
for each element a of r. Here u is any member of S. (Notice that the
interpretation of this condition is that a is "true.") Let (Cr) denote the
resulting set of conditions and e, denote the set of all equivalence
relations on S which satisfy (Cr). Further, let µr denote the intersection
of er. Then '.cr C C and, indeed, is its least member. Each µr-equiva-
lence class is the union of µ-equivalence classes. In particular, the
µr-equivalence class Dr, let us call it, which includes `u, also includes r
and, hence, each is-equivalence class of the form [a],, with a c r.
Assuming that there are at least two µr-equivalence classes, the system
S/µr is a Boolean algebra and Vr is its unit element. According to an
observation made in the preceding section, S/µr is a quotient algebra
of S/µ. Using the characterization given in Theorem 4.2 of the con-
gruence relation which is determined by the associated homomorphism,
we conclude that s A r t iff s + I C [u A u'],,,; that is, if (s + t)' C ` i..

In turn, this condition translates into

sµrI if sue-I C'or,
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which generalizes the earlier characterization of µ as s µ tiffs .-* I Cl).
Before continuing we note that U,. has the following closure properties.

(i) Ifs,IC`U,.,then sAICU,..
(ii) If s E `U, and I C S, then s V I E 0r

To prove (i) observe that ifs, t C 'U,., then s p,. (u A u')' and I m,. (u A u')',
so s A t µ,. (u A u')'. To prove (ii) let s C. 'U,. and I C S be given. Then,
in turn, s µr (t A i')', s' At, t A t', s' A I'm,, I A I', and (s' A I')' fur (t A t')',
which means that s V I C `or.

We continue with our generalization of the results of Section 7 by
showing that it is possible to reach 'U,, independently of µ,, and then
define µr in terms of '0r. To accomplish this we define the subset Vr of S
by modifying part (I) of the earlier definition of V to include I' in Vr.
Then it is clear that V,, may be characterized as the smallest subset of S
that includes V and r and contains the clement t whenever it contains s
and s - t for some s. On the other hand, v,., as we have noticed,
includes V (_ 'o) and F. Further, if s and s -, I (that is, s' V t) are in
v,., then so is t V (s A (s' V t)), according to the closure properties
which we derived for 'U,.. A calculation shows that l V (s A (s' V t)) µ,. 1,
so we may conclude that if s, s --. l C '0,., then t C `o,.. Finally, in view
of the minimality of µr (in terms of which 'U,. was defined), we conclude
that U,, has exactly the same characterization as does V,.. Thereby we
infer that U,. = V. It follows that µ,, may be defined (or, characterized,
at one's preference) as

sJ.crt ilf V.

Now let us interpret the foregoing from the standpoint of the statement
calculus. If we regard (S, A, ') as a statement calculus, then the role of r
is that of a set of premises. Under this circumstance, the free Boolean
algebra S/µ (the Lindenbaum algebra of the calculus) is supplanted by
the quotient algebra S/µ,, and the set V of provable formulas is enlarged
to V,., the set of all formulas which are deducible from F. The set Vr,
which is the unit element of S/µ,., may be described as the smallest set
which includes V and r and is closed under modus ponens. The above
characterization of µ,. in terms of V,. amounts to this: Two formulas are
in the same member of S/µ,. if each is deducible from the other relative
to 1' as a set of assumptions. Finally, we note that a necessary and
sufficient conditions that Sly,, be a Boolean algebra (an assumption
which we have made) is that I' be a consistent set of formulas.

Further insight into the notion of provability and the nature of so-
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called deductive systems at the statement calculus level can be obtained
by reversing our point of view. For this our starting point is the con-
sideration of a Boolean algebra (B, f1, ') whose elements are to be
thought of, intuitively, as the statements of some theory. Further, as-
sume that P is a specified noncmpty subset of B whose elements are to
be regarded as the provable statements of that theory. With this in-
terpretation of P in mind, it is reasonable to make the following assump.
tions about P. If s and t arc members of P, then so is s n t (that is,
"s and t") and, if s is in P, then so is s U t (that is, "s or t") for any
choice of t. Nonempty subsets of a Boolean algebra which satisfy these
conditions are called filters. That is, a nonempty subset F of a Boolean
algebra B is called a filter if

(i) x C F and y C F imply x f1 y C F, and
(ii) x C F and y C Bimply xUyCF.

Before considering the set P as a filter we discuss a few properties of
filters.

Since the defining conditions of a filter arc the duals of those for an
ideal of a Boolean algebra, the term dual ideal is often used in place
of filter. Filters and ideals occur in dual pairs. The pairing is easy to
describe: if I is an ideal of B, then Ix C Bjx' E I} is a filter; if F is a
filter, then (x C Bjx' C F} is an ideal, as is easily proved. 'T'his pairing
provides a bridge for transferring observations about ideals to filters.
For example, both B and (1) are filters of B. Again, if a C B, then
{x E Bjx > a} is a filter; this is the principal filter generated by a.
A filter of 13 which is different from 13 is called a proper filter. A proper
filter may be characterized as a filter which does not contain 0. A max-
imal member (with respect to inclusion) of the set of proper filters of B
is called a maximal filter. For example, in the Boolean algebra of all
subsets of a nonempty set A, the collection of all those subsets of A that
contain a fixed element of A is a maximal filter. The dual of the earlier
proof, that if M is a maximal ideal of a Boolean algebra B and x C 13,
then exactly one of x and x' is in M, yields the same conclusion about
maximal filters. Proofs of the foregoing assertions are left as exercises.
Finally, it is left as an exercise to prove that a filter F of B may be
characterized as a subset of 13 such that 1 C F and, if x, x' U y E F,
then y C F. Introducing x -4y as an abbreviation for x' U y, the latter
condition may be rewritten as: if x, x --+ y E F, then y E F.

We return to the discussion that we began by defining a Boolean logic
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to be an ordered pair (Z, P), where 8 = (B, n, ') is a Boolean algebra
and P is a filter of the algebra. The elements of B will be called statements
and those of the filter P will be called provable statements. We shall
abbreviate "s is in P" by "l- s." As the first logical concept that we
shall introduce into a Boolean logic, we choose that of consistency. A
Boolean logic (58, P) is called consistent if for no s in B both s and s'
belong to P. Since P is a filter, (58, P) is consistent if P is a proper filter.
Next, let us call (S$, P) negation complete if for every s in B, either s or s'
is provable. We contend that (58, P) is negation complete and consistent
iff p is a maximal filter. For the proof assume first that the logic is
consistent and negation complete. Consistency implies that P is a proper
filter and hence has a chance to be maximal. To show that it is maximal,
suppose that Q is a filter which properly includes P, and let s be a
member of Q that is not in P. Negation completeness implies that
/C P and hence that s' C Q. But s and s' in Q imply that 0 = s n s' E Q,
which means that Q = B. The converse is an immediate consequence
of an earlier remark that for each element x of a Boolean algebra exactly
one of x and x' belongs to a maximal filter. We state our result as the
next theorem.

THEOREM 8.1. A Boolean logic (53, P) is consistent and negation
complete if P is a maximal filter of Z.

The next logical notion that we discuss for a Boolean logic ($i, P) is
that of deducibility. If r is a subset of B, then we shall say that a state-
ment s of B is deducible from I' if there exists a finite sequence ul, u2, - , u
of statements of B such that u,, is s and if for each i, I < i < n, either u,
is in I' or P or there exist j < i and k < i such that Uk is u, --' u:. Since
P is a filter we know that 1 C P and y C P whenever x, x --+y C P. It
follows that P satisfies the axioms of a statement calculus [that is,
conditions (I) and (II) for V in the preceding section] and, hence, the
deduction theorem (Theorem 9.2.1) in the form proved for the statement
calculus is available. In the present context we may state it in the fol-
lowing form: If I' C B, then s is deducible from r ii' there exists a finite
subset { r,, r2j , rk) of r such that i-- r, n r2 n n rk - s. We shall
denote the set of statements deducible from I' by r; of course, r depends
on both r and the choice of P.

THEOREM 8.2. The set r of statements deducible from r is the
smallest filter that includes both I' and P.
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Proof. Clearly this is true if r is the empty set, since then P = P. Sup-
pose that r is not empty and let Q be any filter that includes r and P.
If s C F, then there exist elements r,, r2, - , rk of r such that I- r, n r2
n . . n rk - s, by the deduction theorem. Hence r, n r2 n n
rk C Q and rin r2 n n rk -+ s C Q, so s C Q. Thus we have
proved that every filter which includes r and P also includes P. It
remains to prove that P is a filter which includes both r and P. This
is left as an exercise.

We shall call a subset A of B a deductive system if if includes A. By the
previous theorem, A C 0, so A is a deductive system if A = 0 and this
implies that A is a filter including P. Conversely, if A is a filter that
includes P, then A = 0, by the same theorem. Thus, the notion of
deductive systems coincides with that of filters that include P.

EXERCISES
8.1. Show that the relation µ,, is a member of Cr.
8.2. Show in detail that sµrt ifP s H I C u r.
8.3. Write an expanded version (supplying all proofs) of the paragraph in

which V,. is defined and the result that tir = Vr, is obtained.
8.4. Prove the assertion in the text that two formulas are in the same member

of S/µr if each is deducible from the other relative to r as a set of assumptions.
8.5. Prove the assertion in the text that S/µi is a Boolean algebra iT r is a

consistent set of formulas.
8.6. Show that a proper filter may be characterized as a filter which does

not contain 0.
8.7. Show that a filter F of B may be characterized as a subset of B such

that1 CFandx,x'UyCFimply that yCF.
8.8. Show that a maximal filter can be characterized as a filter such that for

each x exactly one of x and x' is in it.
8.9. Rewrite the proof of Theorem 5.3, using filters in place of ideals.
8.10. Complete the proof of Theorem 8.2.

9. Further Interconnections between Boolean Algebras
and Statement Calculi

The two-element set IT, F} determines a Boolean algebra having T
as unit element and F as zero element. By a two-valued homomorphism
of a Boolean algebra B we shall mean any homomorphism of B onto a
two-element Boolean algebra. Since all two-element Boolean algebras
are isomorphic, we may always use IT, F} in considering a two-valued
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homomorphism of B and, thereby, regard such a homomorphism as
providing a "truth-valuation" of the elements of B.

There is a natural one-to-one correspondence between the set of
maximal ideals and that of maximal filters and between each of these
and the set of two-valued homomorphisms of B. In fact, if I is a maximal
ideal of B, then the dual of I (that is, the set of all a' where a E I) is a
maximal filter and the formula

(1) v(b) _ {T if b (Z I

defines a two-valued homomorphism of B. Similarly, if F is a maximal
filter of B, then the dual of F (that is, the set I of all a' such that a E F)
is a maximal ideal and (1) defines a two-valued homomorphism corre-
sponding to F. On the other hand, if v is a two-valued homomorphism
of B, then the set

I = {b C Blv(b) = F}

is a maximal ideal and the set

F = {b C Blv(b) = Ti

is a maximal filter dual to I.
By virtue of these natural correspondences, the following assertions

are equivalent to each other.

(2) For every proper ideal I there exists a maximal ideal which
includes I.

(3) For every proper filter F there exists a maximal filter which
includes F.

(4) For every proper ideal I [proper filter F] there exists a two-valued
homomorphism v such that v(b) = F for b C I [v(b) = T for b C F].

Now (2) is simply our Theorem 5.2, so the validity of (3) and (4)
then follow.

As an application of the foregoing we analyze the nature of truth-value
assignments to the formulas of a statement calculus. If So is the set of
prime formulas of the statement calculus (S, A, '), then an assignment
of truth values to the elements of S amounts to the extension of a given
mapping on So into IT, F} to one on S onto IT, F}, in accordance with
the inductive definition given in Section 4.3. Thereby it is insured that
equivalent formulas are assigned the same value. Hence, the extended
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mapping may be construed as a mapping v on the Lindenbaum algebra
(S/µ, A,') onto IT, F), and the definition of v implies that it is a two-
valued homomorphism of the. Lindenbaum algebra. The kernel of v is
the maximal ideal which is related to v in the natural correspondence
mentioned above. On the other hand, any two-valued homomorphism
v of (S/µ, A, ') (regarded as simply a free algebra) yields a truth-
valuation of the elements of S/µ and Hence of the elements of S upon
assignment of T or F to a formula according as the u-equivalence class
to which it belongs is assigned T or F. It is easily shown that this is a
truth-value assignment in the sense of Section 4.3. In summary, truth-
value assignments to the formulas of a statement calculus coincide with
two-valued homomorphisms of the Lindenbaum algebra of the calculus.
Furthermore, the existence of truth value assignments to a statement
calculus is insured by the existence of maximal ideals in a Boolean
algebra, and conversely.

The existence of maximal ideals that include a preassigned proper
ideal of a Boolean algebra also insures the existence of an isomorphic
image of the algebra in the form of an algebra of sets. Indeed, the
existence of such maximal ideals is the basis for the proof of Stone's
representation theorem! Conversely, from the assumption that

(5) For every Boolean algebra there is an isomorphic algebra of sets.

may be inferred the existence of maximal ideals in Boolean algebras.
This result, which is also due to Stone (1936), follows immediately from
the existence of maximal ideals in an algebra of sets. To prove this, in
turn, let us consider an algebra a of sets based on 11. Let V be any
subset of U and let a(V) be the collection of all elements of a which
are included in V. Then it is possible to prove that a(V) is an ideal
of a and that a(V) is a maximal ideal of a if U - V has exactly one
member. Since the proof makes an interesting exercise, we shall allow
the reader to carry this out.

The completeness theorem (Theorem 9.2.3) for the statement calculus
can also be obtained from the theorem on the existence of maximal
ideals, and hence filters, in a Boolean algebra. To show this let us
consider a statement calculus e _ (S, A, ') and its Lindenbaum algebra
21 = (S/,u, A, '). In Section 9.2 we prove that the completeness theorem
for e is cc,u<valent to the property that for every formula s, if (si is

consistent, then s is satisfiable. In turn, since {sl is consistent iff not
i- s', the consistency of (.s( means simply that s is not a member of the
zero element of I. Further, in view of our above analysis of truth-value
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assignments to elements of a statement calculus, the satisfiability of s
corresponds to the existence of a two-valued homomorphism v of ?l
such that v([sj,,) = T. Thus, the completeness theorem may be trans-
lated into the following form: For any nonzero element a of 21 there
exists a two-valued homomorphism v of ?1 such that v(a) = T. An
equivalent statement, which results upon considering the principal filter
generated by a and then the equivalence of propositions (3) and (4), is:
Each nonzero element of 21 is a member of a maximal filter of W. It is
this proposition which we shall take as the Boolean translation of the
completeness theorem. Then the completeness theorem follows immedi-
ately from the theorem on the existence of maximal filters. We note that
this derivation of the completeness theorem does not involve any restric-
tion on the cardinality of the set of primitive symbols of the statement
calculus. In particular, therefore, the set of primitive symbols may be
assumed to be uncountable.

Conversely, the existence of maximal filters can be deduced directly
from the completeness theorem formulated in a stronger form. To be
precise, we can prove the equivalence of the existence of maximal filters
and the strong completeness theorem for the statement calculus (with
no restrictions on the cardinality of the set of primitive symbols). For
this we use the fact (see Section 9.2) that the strong completeness theo-
rem for t is equivalent to the proposition that

(6) Every consistent set of formulas is simultaneously satisfiable.

Now assume that r is a consistent set of formulas of CS and let V, denote
the set of all formulas which are deducible from r. Then V,./µ is a
proper filter of $l, as we shall show. To prove that is a filter we
use the characterization of a filter given earlier as a subset I' of a Boolean
algebra B such that (i) 1 C F and (ii) if a and a -' b are in F, then so
is b. In the case at hand, (i) is satisfied because the set of theorems of S
is included in Vr, and (ii) is satisfied because V, is closed under modus
ponens. Finally, the consistency of IF implies that is a proper filter.
Next, analyzing the satisfiability of I' as we did above for the case of a
single formula, we infer that as the Boolean translation of the strong
completeness theorem we may take the statement

(7) Every proper filter of the Lindenbaum algebra of a statement
calculus is included in a maximal filter.

Since (7) is a special case of (3), to prove the equivalence of (7)
and (3) it must only be shown that (7) implies (3). For this let B be a



286 Boolean Algebras I CHAP. 6

Boolean algebra and I be some proper ideal of B. We now form the
statement calculus (s, A, ') generated by a set So whose members p= are
in one-to-one correspondence with the elements x of B. Now consider
the mapping f on S onto B given by the following inductive definition:

AM =x,
As') = U(s)) ', for all s in S,

f (s. A t) = f (s) A f (t), for all s and tin S.

It is seen immediately that if t is a theorem of S, then f(t) = 1 and for
all s and tin S, f(s t) = I iff f(s) = f(t). These facts imply (recalling
Section 7) that if sit 1, then f (s) = f (l). Hence, f induces a mapping g
on S/µ, the Lindenbaum algebra of S, onto B. Clearly, g is a homo-
morphism onto B, so B is isomorphic to a quotient algebra (S/ic)/J.
Now let K denote the counterimage in S/µ of the given proper ideal I
of B. Then K 2 J since I includes 10). From our assumption (7) follows
the existence of a maximal ideal M that includes K, and consequently J.
Now M, as an ideal, is a Boolean algebra and J is an ideal of this
algebra. It is left as an exercise to prove that M/J is a maximal ideal
of (S/µ)/J. But then the isomorphic image of M/J in B is a maximal
ideal of B that includes I. This shows that (2), and hence its equivalent
(3), holds.

From the results which have been obtained it is clear that the state-
ments (2)-(5) about Boolean algebras are equivalent to each other.
Moreover, the equivalence of each pair has been established without
recourse to the axiom of choice. On the other hand, all known proofs
of (2), for example, are based upon the axiom of choice or an equivalent
principle of set theory. A problem arises as to whether (2) is really.
dependent on the axiom of choice. This problem has been responsible
for the derivation (without use of the axiom of choice) of a great variety
of statements about Boolean algebras which are equivalent to (2) and,
also, the investigation of specialized forms of the axiom of choice which
are consequences of (2). The most comprehensive treatment of these'
matters to date is due to J. Loi and C. Ryll-Nardzewski (1954-1955).
The strongest result which they found is that (2) implies the axiom of.
choice for the case of a collection of nonempty finite sets. The question
as to whether the axiom of choice is independent of (2) is as yet unsolved;
the evidence suggests that the answer is in the affirmativej

f (Added in proof.) It has just come to my attention that a further contribution to thit
matter appears in J. D. Halpern (1961). There it is asserted that in certain models of sdi
theories (2) is true but the axiom of choice is not.
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We conclude by remarking that the demonstration of the strong
completeness theorem [in the form (6) ] for the statement calculus is not
the end of the applications of Boolean methods to mathematical logic.
Many fundamental theorems about the predicate calculus and about
first-order theories can be easily proved by applying Boolean methods

to appropriate "Lindenbaum algebras" associated with such theories.
An outline of such applications appears in R. Sikorski (1960).

EXERCISES
9.1. Show that if v is a two-valued homomorphism of the Lindenbaum alge-

bra of a statement calculus, then it provides truth value assignments to the
elements of the statement calculus in the sense of Section 4.3.

9.2. Complete the proof of the result that (5) implies (2).
9.3. Show in detail that we may take (7) as the Boolean translation of the

strong completeness theorem for a statement calculus.
9.4. Fill in the details of the proof in the text that (7) implies (3).

BIBLIOGRAPHICAL NOTES
Sections 1-3. An introductory account of Boolean algebras appears in

E. R. Stabler (1953). A more sophisticated treatment is to be found in P. C.
Rosenbloorrr (1950). A high-level, modern treatment of the theory, which treats
Boolean algebras primarily from the standpoint of a generalization of algebras
of sets, has been given by R. Sikorski (1960). Another high-level account, which
places more emphasis on the algebraic structure of the theory, appears in
G. Birkhoff (1948). There exists a great variety of formulations of the theory of
Boolean algebras. The book by Sikorski lists references to many of these. The
axioms introduced in Section 3 are due to L. Byrne (1946). The same set is
used by Rosenbloom in his book.

Section 4. A discussion of congruence relations for Boolean algebras
appears in Rosenbloorrr (1950). Congruence relations for algebraic systems in
general are discussed in Section 8.1 of this book. For a more comprehensive
treatment of ideals, homomorphism, and so on, Sikorski (1960) should be
consulted.

Section 5. An exhaustive treatment of representations of Boolean algebras
by algebras of sets along with related topics is given in Stone (1936, 1937, 1938).
The fundamental representation theorem and the theorem on the existence of
maximal ideals have been the subjects of many papers. References to such
papers and a concise presentation of Stone's work appear in Sikorski (1960).

Sections 6-7. An expository account of the subject material of these
sections appears in P. R. Halmos (1956). This paper also gives an introduction
.to polyadic algebras, which stand in the same relationship to the pure predicate
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calculus of first order as do Boolean algebras to the statement calculus. Rosen-
bloom (1950) also discusses some of these topics.

Section 9. The application of Boolean methods to mathematical logic
was the subject of many papers in the early 1950's. Many of these papers were
published in Fundamenta Mathemalicae. Exact references are given in Sikorski's
book.



CHAPTER / Informal Axiomatic

Set theory

THE ANTINOMIES OF INTUITIVE set theory pose the problem of pro-
viding a theory of sets which is free of contradictions. The analysis of
the well-known antinomies (Section 2.11) for the purpose of determin-
ing possible fallacies in methods of constructing and reasoning about
sets-methods which had seemed convincing before they were found to
generate contradictions-has led to several reconstruction of set theory
along axiomatic lines. This chapter is devoted to outlining that one
known as Zermelo-Fraenkel set theory [although it would be more ap-
propriate to call it Zermelo-Fraenkel-Skolem set theory, since it is the
theory of E. Zermelo (1908) as modified by both A. Fraenkel and
T. Skolcm]. In the last section fleeting contact is made with the other
axiomatization of set theory with which mathematicians feel comfort-
able-the von Neumann-Bernays-Godel theory.

Since that part of Zermclo-Fraenkel set theory which reconstructs
the theory of Chapter 1 and Chapter 2, up to cardinal numbers, closely
parallels the earlier intuitive development, we shall, so to speak, merely
provide the axiomatic underpinnings for it. Then, for Cantor's theory
of transfinite arithmetic, we substitute the theory of ordinal and cardinal
numbers due to von Neumann.

1. The Axioms of Extension and Set Formation

The recipe in Section 5.2 for presenting an informal theory cannot be
used here since it calls for a "general theory of sets" as an ingredient.
An obvious alternative, which we shall adopt, is to presuppose only a
system of logic. As the primitive notions of Zermelo-Frankel set theory,
which we shall symbolize by e, we take set and (the 2-place predicate)
membership. We shall denote the relation of membership by "C" and, at
the outset, denote sets by lower-case letters. Before describing the prime

289
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formulas of CS a decision must be reached as to whether the relation
of equality shall be taken as part of the underlying logic or introduced
as a defined relation of the theory; either is possible. In Example 4.7.1
the latter point of view is adopted. Here we elect the former viewpoint.
This is in keeping with the procedure in Zermelo (1908).

With the equality relation included in the underlying logic it is pos-
sible, in an interpretation of the theory, to admit nonsets (that is, ob-
jects which, like the empty set, have no members but are distinct from
the empty set) in the domain of the relation assigned to E. [Such objects
are commonly called individuals; Suppes (1960) and Fraenkel-Bar-
Hillel (1958) discuss this matter. ] Although we intend that in the theory
which we shall formulate all variables shall denote sets, initially we
shall suggest a possible distinction between sets and objects which may
be members of sets by using "a," "b," to denote the former and
"x," "y," to denote the latter.

With equality included as part of the system of logic, the prime
formulas of G have the form

(1) xCa
or the form

(2) a=b.
The first of these we shall read as "x is an element of a" or "x is contained
in a." For a precise definition of a (composite) formula of Cs, we now
refer the reader to the beginning of Section 4.7. However, in order to
avoid completely any illusion that we are setting up a formal theory,
the only symbolism that we shall employ in writing formulas is of the
sort displayed in (1) and (2), along with

xQa and a0b
for "not (x E a)" and "not (a = b)," respectively. Thus, we shall not
use the symbolism of the predicate calculus but, instead, the (meaning-
ful) English equivalents of connectives and quantifiers. In harmony
with this agreement, we shall use the word "sentence" in place of the
word "formula." In particular, a formula (in the technical sense)
which contains a free occurrence of x will be called a "condition on x"
or a "property of x" and symbolized

A(x).

A statement (in the technical sense) we take to be true or false, since
we assume that each prime formula is either true or false.
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This completes our description of the ground rules. We proceed with
our first two axioms.

(ZF1) (Axiom of extension). If a and b are sets and if, for all x,
x E a ifl' x E b, then a = b.

(ZF2) (Axiom schema of subsets). For any set a there exists a
set b such that, for all x, x E b if x E a and A(x). Here, A(x) is any
condition on x which (considered as a formula in the technical sense)
contains no free occurrence of b.

In contrast to (ZF1), which is a statement, (ZF2) is an infinite collec-
tion of statements. That is, it is a scheme for producing axioms, one
for each choice of A(x). This accounts for (ZF2) being called an axiom
schema. As in intuitive set theory, to indicate the way b is obtained from
a and A(x) we shall write

b = (x E aIA(x) }.
It is an immediate consequence of (ZF1) that the axiom schema of
subsets determines b uniquely. The usage of the term "subset" here
anticipates the introduction of

a C b (read : a is a subset of b, or, a is included in b)
as an abbreviation for "all x, if x C a then x C b "

At this point we might derive familiar properties of the inclusion
relation and continue with the definition of proper inclusion and prop-
erties of this relation. Both here and subsequently, when we have car-
ried a notion or topic belonging to the general set theory of Chap-
ters 1-3 to a point where the earlier definitions and proofs are applicable,
we shall drop the matter. Our emphasis will be directed principally
toward notions and procedures of intuitive set theory which apparently
cannot be carried out within the axiomatic framework.

Our first illustration of the last remark can be given now. It is clear
that (ZF2) is a substitute for the intuitive' principle of abstraction (Sec-
tion 1.2) and that (ZF2) is more restrictive in this respect. Whereas
the earlier principle provides a set for each condition or property, the
present version only provides the existence of a set corresponding
to a condition and which is a subset of an existing set. With this restric-
tive feature, Russell's paradox cannot be reconstructed, so far as we
know. What can be produced by imitating the earlier argument is the
following. According to (ZF2), with A(x) as x (4 x, for any set a, if
b = (xEajx(Z x), then, for ally,
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(3) yCbiffy Caand y(Zy.
It follows that b V a. The proof is by contradiction. Assume that b C a.
Now either b C b or b V b. If b C b, then in view of our assumption
and (3), we have b (Z b and hence a contradiction. If b V b, then this
and our assumption yield, in view of (3), b C b, a contradiction. The as-
sumption that b C a having led to a contradiction, we may conclude
that b (Z a. Since the set a was unspecified in reaching this result, we
infer that there is no set that contains every set. In Halmos (1960)
this is paraphrased as "nothing contains everything."

The axiom schema of subsets is often referred to by its German name
Axiom der Aussonderung (axiom of "singling out" or "separation"). This
name is suggestive since it does permit us to single out or separate off
those elements of a given set which satisfy some condition and form the
set consisting of just those elements. Incidentally, this axiom schema
may be considered as characterizing Zermelo's attitude with regard to
a reconstruction of set theory which avoids the classical antinomies. His
analysis of these contradictions led him to conclude that they resulted
from the admission into intuitive set theory of "too large" sets. This led
him to limit severely, by means of axioms, allowable methods of form-
ing sets from existing sets and, in addition, to modify the principle that
every condition determines a set.

2. The Axiom of Pairing

The goal of anyone who aspires to axiomatize set theory has already
been mentioned: To create a consistent theory within which as much
as possible of the general set theory of Chapters 1-3 can be developed
and, if a proof of consistency is not within reach, to incorporate ade-
quate safeguards to insure that the classical antinomies cannot be
derived. Axiom schema (ZF2) has both a constructive as well as a
restrictive quality, the latter evidencing itself in its conditional nature.
In order to imitate the intuitive set theory of Chapter 1, further means
of constructing sets from existing sets must be introduced. The next
three axioms are in this category. In this section we introduce one of
them.

(ZF3) (Axiom of pairing). If a and b are sets, then there exists
a set c such that a C c and bCc.
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Using the instance of (ZF2) obtained by taking A(x) to be "x = a
or x = b" and c to be a set such that a C c and b C c, we infer the exist-
ence of the set

{xCclx=aorx=b}.
Clearly this set contains just a and b and (ZF1) implies there is only one
such set. We shall denote it by the symbol

{a, b}

and call it the (unordered) pair formed by the sets a and b.
As is easily shown, an equivalent formulation of (ZF3) is the state-

ment that for sets a and b there exists a set c such that x C c iff x = a or
x = b. If we take A(x) to be condition "x = a or x = b," the foregoing
remark means that we may express (ZF3) as: There exists a set d
such that
(1) x E d ifl'A(x).
Now (ZF2), applied to a set c, asserts the existence of a set d such that

(2) xCdiff(xEcandA(x)).
Comparing (1) with (2) may suggest that (1) is a special case of (2)
and, in turn, that (ZF3) is superfluous. This reasoning is spurious; for
it is only when the existence of a set which contains a and b is assured
that (2) yields (1), and it is precisely (ZF3) which gives this assurance.

With the notation of intuitive set theory in mind, it seems natural
to denote the set d described in (1) by {xIA(x) } ; that is, to write

{a, b} _ {xJx =aorx = b}.
Henceforth we shall use this symbolism when it is convenient and per-
missible. That is, if A(x) is a condition on x such that those x's which
A(x) specifies do constitute a set, then we may denote that set by

{xIA(x) } .

With this convention we may rewrite {x C aIA(x) }, where a is a set,
as {xJx E a and A(x) }, but we shall not do so since the latter denotation
is longer than the former.

If a is a set, we may form the pair {a, a). This set we denote by
{a}

and call the unit set of a. As an illustration of the notation agreed upon
in the preceding paragraph, we may write

{a} = {xIx = a).
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The specialization of (ZF3) which yields the unit set of a set insures
that every set is an element of some set and (ZF3) in its general form
insures that any two sets are elements of some one set. Thereby, given
a set a, it becomes possible to manufacture a variety of sets such as (a
(a, (a) }, ((a}, ((a} 11, and so on.

3. The Axioms of Union and Power Set

None of the axioms up to this point assert the existence of any sets.
It will prove to be expeditious to anticipate a later axiom which does
this (and more), by introducing as a temporary axiom:

there exists a set.

Then we can establish the existence of a set without elements. Indeed,
let a be a set and take A(x) to be "x 9-6 x." Then, according to (ZF2),
there exists the set

(x C ajx s x}.

This (uniquely determined) set has no elements. We shall call it the
empty set and adopt the familiar symbol

0
for it.

We now turn to the first business of this section by observing that if c
is a nonempty set, that is, if c 0, then there exists a set a such that
x C a if x C y for every y which is a member of c. In other words, for
each nonempty set there exists a set that contains exactly those elements
that belong to every member (set) of the given set. To prove this asser-
tion, let b be any member (set) of c and define

a = (xCbiforally (ifyCc,thenxCy)}.
The set a is independent of the element b since it is easily shown that

a = (xj for ally (if y E c, then x E y) }.

The set a is called the intersection of c. For a discussion of the notation
used for intersections we refer the reader to Section 1.10. Here we shall
only call attention to the notation

allb,
where a and b are sets, for the set defined by

alb=Ix CaixEb}.
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Since x C a (1 b iff' x C a and x C b, it follows that

an b = {xjxCaandxcb}.
In contrast to the situation for intersection, we require a further

axiom to be able to produce in CS the notion of the union of a set. The
following is a generous form of the necessary axiom.

(ZF4) (Axiom of union). For every set c there exists a set a such
that if x C b for some member b of c, then x C a.

If c is a set and a is a set of the kind specified in (ZF4), then we may
apply (ZF2) to form the set

{xCal for some y(xCyandyCc)}.
Clearly, for all x, x is contained in this set, which we call the union
of c, if x is an element of an element of c. We may then write the union
of c as

The notation
{xj for somey (xCy and y E: c)).

a U b,

where a and b are sets, will be used for the union of the set {a, b}. By
virtue of the definition of the union of a set, x C a U b if x is a member
of a or x is a member of b. Thus

aUb= {xjxCaorxCb}.
For a discussion of the notation used for unions we again refer the reader
to Section 1.10.

With the aid of (ZF4) it is possible to generalize pairs. For instance,
the (unordered) triple formed by sets a, b, and c, symbolized

{a, b, c},
may be defined by

(a, b, c) = ({a) U {b}) U {c}.

Then it follows easily that

(a, b, c) = {xjx = a or x = b or x = c}.

The extension of the notation and terminology to the case of further
terms is clear.

It is now possible to introduce, for sets a and b the relative comple-
ment of b in a as the set a - b, defined by

a-6= {xCajxiZ b},
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and in turn, the symmetric difference of a and b as the set a + b,
defined by a + b = (a-b)U(b-a).
At this point it is possible to derive all the results listed in Chapter 1
concerning properties of union, intersection, relative complement, and
symmetric difference, including their interrelations.

To complete the reconstruction of the intuitive theory of Chapter 1
within C5, we need the theory of relations, for which the starting point is
the notion of an ordered pair. Since the (unordered) pair formed by
two sets as well as the unit set of a set can be constructed, the ordered
pair of sets a and b (with first coordinate a and second coordinate b)
can be introduced as the set (a, b), defined by

(a, b) = ( (a}, {a, b} },

just as in Chapter I. The earlier proof carries over : if (a, b) and (c, d)

are ordered pairs and if (a, b) _ (c, d), then a = c and b = d. However,
the existence in 6 of what we called earlier the cartesian product of
two sets requires a principle of set construction which the axioms at
hand do not seem to permit. We can dispose of the matter at hand as
well as the existence of the power set of a set with the aid of the following

axiom.

(ZF5) (Axiom of power set). For each set a there exists a set
b such that, for all x, if x C a, then x C b.

To secure the existence of the power set of a set from this axiom is

an easy matter. If a is a set and b is a set which contains all of the sub-

sets of a as members, then we apply (ZF2) to form the set {x C bIx g a}.
For all x, x is a member of this set if x is a subset of a. We call this set

the power set of a, symbolized
P(a).

Thus,
6'(a) = {xix Cal.

To establish the existence of the cartesian product of sets a and b,

we notice first that if x C a and y C b, then { x } C a, l y } C b, and

hence the sets (x} and {x, y} are included in a U b. In turn, {x} and
{x, y} are members of (P(a U b), which implies that { {x}, {x, y} } =

(x, y) is a subset of 61(a U b). It follows that (x, y) C 6(G (a U b)). We
infer that the set we want can be obtained by an application of (an in-
stance of) (ZF2) to tP(6'(a U b))'. The appropriate condition is quite
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long; for the sake of both brevity and clarity we shall write it in sym-
bolic form. The cartesian product of sets a and b is the set a X b
defined by

{wE6'(6'(aUb))I(3x)(3y)(x0yAxCaAvCbA(z)(zCwE-r
z = {x} V z = {x,y}))V (3x)(x C a A x C b A
(z)(zC w-'z = {x)))}.

Since w C a X b iff w = (x, y) for some x in a and some y in b,

a X b = { w l for some x in a and some y in b, w = (x, y) 1.

Defining a (binary) relation as a set each of whose members is an
ordered pair, it is of importance to know that we can prove that a
relation is a subset of the cartesian product of two sets. In this connec-
tion we recall Exercise 1.10.1, where it is asserted that if r is a relation,
then (using notation introduced in Section 1.10) r is a subset of the
cartcsian product of UUr with itself. We may apply (ZF2) to this car-
tesian product, taking for the condition first "for some x ((x, y) C r),"
and secondly "for some y ((x, y) E r)," to produce the sets

{xI for some x ((x, y) C r) }
and

{yJ for some y ((x, y) E r) },

which we call the domain and the range, respectively, of r. In partic-
ular, the domain and the range of a relation are sets and a relation is
a subset of the cartesian product of its domain and its range.

At this point it is possible to complete the reconstruction of the set
theory of Chapter 1, obtaining the theory of equivalence relations,
functions, and partial ordering relations found there.

4. The Axiom of Infinity

Let us consider for a moment the theory of sets based on just the
axioms (ZFI)-(ZF5) plus the temporary axiom that a set exists. The
presence of the axiom of pairing makes possible the formation of an
arbitrary large number of distinct (two-element) sets. We infer that
the domain of any model of the theory must be infinite. On the other
hand, since the union of a finite collection of finite sets and the power
set of a finite set are finite sets, it does not appear that the axioms are
adequate to prove the existence of an infinite set. The correctness of
this surmise may be demonstrated by way of a model devised by
W. Ackermann (1937).
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The domain of the interpretation which can be shown to be a model
is N. In order to define the relation of membership, we shall need the
fact that a positive natural number a has a unique representation in the
form

a = 2=' + 2- + ... + 2zr,
where the x's are natural numbers and xl < X2 < . < x,.. Then, for
natural numbers (that is, sets) x and a, we define x C a as true if x ap-
pears as an exponent in the representation of a in the form exhibited
above. Thus, each set has only a finite number of elements. It is left
as an exercise for the reader to prove that this interpretation is indeed a
model of the theory under discussion. Actually, this system is a model
of the theory whose axioms are all such that they will eventually be
assigned to S except the axiom of infinity which is introduced below.
Thereby the system provides a proof of the independence of this axiom.
Ackermann, however, devised it for a more profound purpose, namely,
to provide the basis for a finitary consistency proof of the theory having
(ZF1)-(ZF5) together with the axiom of choice (see Section 5) as
axioms.

There are compelling reasons for strengthening the set of axioms
introduced thus far, to provide for the existence of an infinite set.
Specifically, the existence of the set of natural numbers is essential for
the theory of denumerable sets and for the theory of real numbers.
Although we have not as yet given a precise definition of infinity, it
seems plausible that sets of the kind which are postulated by the fol-
lowing axiom merit being called infinite on intuitive grounds.

(ZF6) (Axiom of infinity). There exists a set a such that 0 C a
and, ifxEa, thenxU {x} Ca.

Zermelo was the first to recognize the necessity of such an axiom;
earlier workers regarded the existence of infinite sets as evident. He
constructed the natural numbers as 0, 10 }, {{0 } ), - - , which is a
satisfactory approach but one that does not generalize to the construc-
tion of infinite ordinals as easily as that adopted below.

For every set x we define the successor x+ of x by

x+ = x U {x}.

Further, we shall say that a set,a is a successor set if 0 C a and if
x+ E a whenever x C a. In this terminology, (ZF6) says that there exists
a successor set. We shall now prove the existence of a unique minimal
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successor set. It is left as an exercise to prove that the intersection of a
nonempty collection of successor sets is again a successor set. So, if a
is some successor set, then the intersection of the (nonempty) collection
of successor sets which are included in a is a successor set which we
denote by co (with the notation introduced in Section 2.6 in mind).
The set w is a subset of every successor set. To prove this, consider an
arbitrary successor set b. Then a n b is a successor set which is included
in a. It follows that w g a (1 b, and hence w C b. In turn, the min-
imality of co characterizes it uniquely. For if w' is a successor set which
is included in every successor set, then we have w g w' and co' C co.
Then (ZFI) implies that co = co'. We now define a natural number
to be an element of the minimal successor set co. Further, we define
0, 1, 2, , 9 by writing

0=0,
I = 0+(= {0}),
2=1+(={0,1}),

9 = 8+(= 10, 1, 2, 3, 4, 5, 6, 7, 8}).

For other natural numbers we employ the usual decimal notation.
We continue by proving that (w, +, 0), where now we regard + as

a function on co into w, is an integral system or, what amounts to the
same, that this system satisfies Peano's axioms P1-P5 in Example 2.1.2.
Since w is a successor set, 0(=Q) C co [that is, Pl is satisfied] and, if
n C w, then n+ C w [that is, P2 is satisfied]. Moreover, n+ s 0 for all
n in w, since n C n+ and n i[ 0 [that is, P4 is satisfied]. The minimality
property of w can be expressed as: If a subset a of w is a successor set,
then a = w. But this means that P5 is satisfied. It remains to prove that
P4 (if m+ = n4", then m = n) is satisfied. This requires two preliminary
results which we state as lemmas.

LEMMA 4.1 . No natural number is a subset of any of its elements.
Proof. Let a be the set of those natural numbers that are not included
in any of their elements. Thus, n C a iff n C w and, if x C n, then
n!9 x. Clearly, 0 C a, since 0 has no elements. We assume next that
n C a and consider n+. Since n+ = n U {n}, the elements of n+ are n
and the elements of n. Now n'- n for, since n C n (and, n C a),
n V n. Moreover, n+ is not included in any member of n, since if
n+ S x, then n C x (because n C n+), which implies (since n C a)
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that x (Z n. Therefore, n+ is not a subset of any of its elements and
consequently n+ C a. By the principle of induction (P5), it follows
that a = w, and this completes the proof.

In order to state the next lemma it is convenient to make a definition.
A set a is called complete if each member of a is a subset of a. Expressed
otherwise, a is complete if y C x and x C a imply that y C a.

LEMMA 4.2. Every natural number is a complete set.

A proof by induction can be supplied by the reader.

We now prove that if m and n are natural numbers such that m = n+,
then m = n. For this we assume that m+ = n+" and m P6 n, and derive
a contradiction. From m+ = n+ it follows that m C. n+, and hence
either m = n or m C n. Similarly, either n = m or n C m. Assuming, as
we are, that m 0 n, we infer that both m C n and n C m hold. Hence,
by Lemma 4.2, n C n. Combining this with the fact that n C n, we
conclude that n is a subset of one of its members, which contradicts
Lemma 4.1.

With the proof now completed that w satisfies the Peano axiorns, the
stage is set for a development of the arithmetic of w. If, as in Chapter 2,
the definition of a relation that well-orders co is taken as the first order
of business, then there is the following alternative to the procedure
followed in Chapter 2. The first step is to prove (an exercise for the
reader) the following result.

LEMMA 4.3. For each pair in, n of natural numbers, either m C n
or m = n, or n C m.

Using Lemmas 4.1 and 4.2, it is then an easy matter to show that
exactly one of these three alternatives holds. A further consequence of
Lemma 4.3, in conjunction with Lemma 4.2, is stated next; the proof
is left to another exercise.

LEMMA 4.4. If m and n are distinct natural numbers, then m C n
ifmCn.
We now define m to be less than n, symbolized

m < n,
if m C n or, equivalently, in C n. Defining m < n in the usual way,
one may then go on to show that < well-orders CO.
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Next in order is the introduction of Theorem 2.1.2, so inductive
definitions of addition and multiplication can be given.

Turning to other definitions and results in Chapter 2 which pertain
to natural numbers, we recall that there are several in Section 2.3
phrased in the language of cardinal numbers. All such can be handled
easily in the present development in terms of the notion of the similarity
of two sets (that is, the existence of a one-to-one correspondence be-
tween them) and the properties of natural numbers sketched so far.
Preparatory to what we have in mind we state the following two results.
Each can be proved by induction.

LEMMA 4.5. Each proper subset of a natural number is similar to
some smaller natural number.

LEMMA 4.6. No natural number is similar to a proper subset of
itself.

We may infer from Lemma 4.6 that a set can be similar to at most
one natural number. Then, defining a set to be finite if it is similar
to some natural number (and to be infinite, otherwise), it follows that
a finite set is not similar to any one of its proper subsets (Theorem 2.3.3)
and, in turn, that w is an infinite set. Also, Lemma 4.5 implies that
every subset of a finite set is finite. Once the Schroder-Bernstein theorem
(Theorem 2.3.1) is proved, it can also be shown that a set a is finite if
a < w.

In concluding this section we note that the theory of countable sets,
including Cantor's theorem (Theorem 2.3.6) stated in the forma < 61(a),
could now be presented. Also it is possible to carry out the extension
of w to the system of real numbers, as described in Chapter 3.

EXERCISES
4.1. Prove that Ackermann's system satisfies axioms (ZF1)-(ZF5).
4.2. Show that the intersection of a nonempty collection of successor sets is

a successor set.
4.3. Prove Lemma 4.2.
4.4. Prove Lemma 4.3.
4.5. Prove Lemma 4.4.
4.6. Prove that < well-orders w.
4.7. Prove Lemma 4.5.
4.8. Prove Lemma 4.6.
4.9. Let us define the number of elements in a finite set a, symbolized n(a),
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to be the unique natural number similar to a. Prove the following statements
for finite sets a and b.

(a) If a C b, then n(a) < n(b).
(b) The set a () b is finite and n(a () b) < n(a) and n(a f b) < n(b).
(c) The set a U b is finite and n(a U b) < n(a) + n(b).
(d) The set a X b is finite and n(a X b) = n(a)n(b).
(e) The set ab is finite and n(ab) = n(a)n(b).
(f) The set P(a) is finite and n(P(a)) = 2n(a).

5. The Axiom of Choice

In order to clean up some details in connection with the subject
matt°r sketched at the end of the preceding section and to develop a
reasonable theory of cardinal numbers when they are defined as certain
ordinals, the axiom of choice is required. With these applications in
mind, we shall state it in the following form. An indication of a prefer-
ence in this connection has no foundation, however, for within the
framework of c it is possible to derive as equivalent statements those
appearing in Section 2.8.

(ZF7) (Axiom of choice). For each set a there exists a function f
whose domain is the collection of nonempty subsets of a and, for
every bCawith b76 0, f(b) C b.

Concerning applications of this axiom to topics touched on in Sec-
tion 4, we note first that every known proof that an infinite set is sim-
ilar to a proper subset of itself (Corollary 2 of Theorem 2.9.1) requires
the axiom of choice. Also we recall that this axiom was needed to prove
the law of trichotomy for sets; that is, for any two sets a and b, exactly
one of a < b, a N b, b < a holds. This is the content of the Corollary
to Theorem 2.7.4, once the well-ordering theorem has been derived
from (ZF7).

Looking ahead to the theory of ordinal numbers which follows, when
cardinal numbers are defined as certain ordinals, the axiom of choice
is needed to show that every set has a cardinal number.

6. The Axiom Schemas of Replacement and Restriction

In this section we complete the description of Zermelo-Fraenkel set
theory by introducing two further axiom schemas. One of these serves
to guarantee the existence of "larger" sets than can be constructed on
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the basis of the earlier axioms-sets which must exist if a full-blown
theory of transfinite ordinal and cardinal numbers is to be possible.
The other schema, whose role has not as yet been fully explored, serves
to exclude the existence of certain objects as sets.

To create some interest in the axiom schema of replacement consider
the theory of sets based on just (ZFI)-(ZF7). Then, as we have seen,
w is a set. In turn, by virtue of (ZF5), 6'(w), are sets. In
general, defining P(w) to be w and (pk+"(w) to be P(6k(w)), each of
w, P(w), P2(w), , yn(w), is a set. Now, can we establish the ex-
istence of a set whose members are precisely these sets? That is, can we
establish the existence of

COI = {W, (Q(w), 192(&J), M'
as a set? Since it does not appear possible to achieve this desirable state
of affairs on the basis of just (ZFI)-(ZF7), a further axiom or (in order
to cope with other similar situations) axiom schema is in order. A suit-
able candidate was first proposed by Fraenkel (1922), and independently
by Skolem (1922). As modified by von Neumann (1928), it says, roughly,
that if with each element of some subset of a set there is associated some
one set, then the collection of the associated sets is itself a set. The in-
stance of this schema which results upon choosing w as the initial set
and associating with each n in w the set P"(w), declares that w" is a set.
In the following official version of the schema in question, the hypothe-
sis of the axiom means that for each x in a there is at most one y such
that B(x, y).

(ZF8) (Axiom schema of replacement.) If B(x, y) is a sentence
(formula) such that for each x in a set a, B(x, y) and B(x, z) imply
that y = z, then there exists a set b such that y C b if there exists an x
in a such that B(x, y).

It is of interest that the axiom schema of subsets, (ZF2), can be
derived from (ZF8). Indeed, given a set a and a sentence A(x), take
B(x,y) to be "x = y and A(x)." The hypothesis of the axiom which
results is satisfied, so we may infer the existence of a set b such that
y C b ill there exists an x in a such that x = y and A(x). That is, given
a and A(x), there exists a set b such thaty E b iffy C a and A(y), which
is (ZF2).

The axiom of pairing, (ZF3), can also be derived from the axiom
schema of replacement and (ZF5), the axiom of power set. This result
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appears in Zermelo (1930). To prove it, let c and d be two sets whose
pair is to be formed. As the set a in (ZF8) we select the power set

10, {0)) and as B(x, y) we take "x = 0 and y = c or,
x = 10) and y = d." Then, for each x in 61(6'(0)) there is exactly one
y such that B(x, y). Hence, by (ZF8), there exists a set b such that
y C b if there exists an x in 61(c>'(0)) such that x = 0 and y = c or
x = {0) and y = d. Thus, b is the set having just c and d as members.

Next let us indicate how we can prove the existence of w, as a set
with (ZF8). The intuitive idea, as we have already noted, is to replace
the element n of w by 6'n(w) for n = 0, 1, 2, . A suitable choice for
B(x, y) in (ZF8) is the following formula, which, for the sake of clarity,
we will write in terms of the symbolism of the predicate calculus:

(u) (((0, w) E u A (v) (w) ((v, w) C u -' (v, 61(w)) E u)) -* (x, y) E u).

The reader may ponder our contention that this is a suitable choice
for B(x, y).

In contrast to the axiom schema of replacement which, as we shall
show later, provides for the existence of enough sets to reproduce all
of Cantor's theory of transfinite arithmetic, the final axiom schema has
a restrictive character. Since the theory based on axioms (ZFI)-(ZF8)
appears to be sufficiently comprehensive for mathematics, it is natural
to consider the inclusion of an axiom which would serve to limit the
theory to the minimal extension embracing these axioms. There are
reasons to believe that this is too ambitious a goal. However, various
axioms of a restrictive nature suggest themselves if it is desired to exclude
as sets certain models of (ZF1)-(ZFB) having features that run counter
to the intuition. One such feature is the possibility of a set which is a
member of itself or, more generally, a collection of n sets a,, az, , an
such that

a,Can,anCan-i,

The existence of such collections-even that of an infinite descending
sequence of sets (that is, a sequence such that a i l , E a; for i = 1, 2, )

-is consistent with the theory having (ZF1)-(ZFB) as axioms. It is pos-
sible to prevent finite cycles of membership as well as infinite descending
sequences of sets by means of an axiom. Such an axiom was initially
proposed by D. Mirimanoff (1917) as a consequence of his discovery
that descending sequences of the type just mentioned might exist. It
is an instance of the axiom schema which we adopt. Von Neumann
(1925) was the first to introduce it.
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(ZF9) (Axiom schema of restriction). Let A(x) be any condition
on x which (considered as a formula) has no free occurrences of y
or z. If there exists an x such that A(x), then there exists a y such
that A(y) and, for all z, if z C y then it is not the case that A(z).

If we take A(x) to be "x C a," where a is a set, the resulting axiom,
which is called the axiom of regularity is : Every nonempty set a con-
tains an element b such that a n b = 0. This axiom is due to Zermelo
(1930); it is a simplified version of an essentially equivalent axiom
given in von Neumann (1929). The axiom of regularity is sufficient to
exclude phenomena of the type mentioned above. We substantiate, in
part, this claim by deducing from it the following two results.

LEMMA 6.1. For eachseta, a iZ a.

Proof. Assume, to the contrary, that a is a set such that a E a.
Then, on the one hand,
(1) a C {a} n a
since a C (a). On the other hand, by (ZF9), there is a member of
{a} whose intersection with {a} is the empty set. Since the only mem-
ber of {a} is a, it follows that {a} n a = 0, which contradicts (1).

LEMMA 6.2. For no two sets can each be a member of the other.
Proof. Assume, to the contrary, that a and b are sets such that
a C b and b C a. Then
(2) aC {a,b} nb and bC {a,b} na.
The axiom of regularity implies the existence of an element x in
(a, b) such that (a, b } n x= 0. But since we must have either
x = a or x = b, it follows that either { a, b } n a = 0 or (a, b } n
b = 0, which contradicts (2).

In order to give an application of the axiom schema of restriction of a
different nature, we recall that prior to the statement of (ZF8) we men-
tioned that there appears to be no way to obtain wi as a set on the basis
of (ZFI)-(ZF7). When these axioms are augmented with (ZF9) it can
be proved, by way of a model, that wi cannot be shown to be a set; this
was done first by von Neumann (1928). For convenience in discussing
this matter, let us denote the theory whose axioms are those of e, except
for (ZF8), by Coo. Consider the interpretation of to, whose domain is
the union of wi. We contend that it is a model of C5o. First, it is clear
that (ZF1) and (ZF4)-(ZF6) are satisfied and, since (ZF2) requires
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only the existence of certain subsets of a given set, it also is satisfied.
To prove that (ZF3), the axiom of pairing, is fulfilled, consider two
members a and b of Uw,. Then there exist m and n such that a C pm(w)
and b C 61"(w) Hence, both a and b are members of 61"'+"(w). Thus
{a, b} is a member of p-+"+1(w) and, therefore, a member of Uw,.
A proof that the interpretation under consideration satisfies (ZF7) is
complicated and we omit it.

To prove that (ZF9) is satisfied we assume, to the contrary, that it
is not fulfilled and derive a contradiction. So, by hypothesis, there
exists a condition A(x) such that (i) there is an x such that A(x) holds,
and (ii) for all y, if A(y) holds, then there is a z such that z C y and A(z)
holds. Let xo be an x which satisfies (i) and take it as y in (ii). Let x,
be a set which satisfies (ii) ; hence x, C xo and A(xi) holds. Thus, by
(ii) again, there exists an x2 such that x2 C x, and A(x2) holds. Contin-
uing in this fashion yields a sequence xo, x,, x2, such that , x2 C x1,
x, C xo. Now there exists an n such that xo C 61"(w). It follows that, in
turn, x, C 4'"-'(w), x2 C ps-2(w), - , x" C w. Finally, we conclude that
for some m, x"+. C 0, which is impossible.

Now we raise the question of whether Uw1 is a set in this model.
The answer is "no" by virtue of Lemma 6.1. Therefore, since there is
a model of Coo in which Uw, is not present, Coo is not sufficiently strong
for proving the existence of co, as a set. Furthermore, it follows that 6
is a stronger theory since, as observed earlier, we can prove the existence
in it of to,.

In conclusion, we call attention to Section 9.11, wherein appear some
remarks about Zermelo-Fraenkel set theory when formulated as a
formal axiomatic theory.

EXERCISES
6.1. By imitating the proof of Lemma 6.2, prove the nonexistence of three

sets a, b, and c such that a C b, b C c, and c C a.
6.2. Use the axiom of regularity to prove that if a is a set such that a C a X a,

then a = 0.
6.3. Prove Lemma 6.1, using the instance of (ZF9) corresponding to the

condition, "there exists an x such that x C x."

7. Ordinal Numbers

In this and the following section we shall outline the theory of ordinal
numbers due to von Neumann (1928a) as simplified by R. M. Robinson
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(1937). We shall presuppose familiarity with several definitions and
theorems in Chapter 2. The definitions that we have in mind are those
of a well-ordered set, an initial segment of a well-ordered set, and ordinal
similarity (symbolized =),of two well-ordered sets. The results which
we shall presuppose are (i) for each set there is a relation which well-
orders it, (ii) the principles of proof and definition by transfinite induc-
tion, (iii) the existence of exactly one isomorphism between ordinally
similar well-ordered sets, (iv) a well-ordered set is not ordinally similar
to any of its initial segments, and (v) for well-ordered sets a and fl,
exactly one of the following hold: a is ordinally similar to an initial
segment of X13, a = j9, S is ordinally similar to an initial segment of a.
Also we shall use the fact that if a is a well-ordered set, then a+ =
a U { a } is a well-ordered set when we order the elements of a in the
given way and, further, require that t < a for all t in a.

In the von Neumann theory, an ord}nal number is a specific well-
ordered set of a particular kind. Thelleby the concept of order type
(which, at best, is a hazy notion) is avoided completely. The defining
property of those well-ordered sets which are called ordinal numbers
may be thought of as qualities which well-ordered sets should have if
they are to serve as "counting numbers" in the sense that the natural
numbers serve this end. We begin by calling attention to several prop-
erties of natural numbers, relative to the ordering relation <, which
culminate in one observation which is crucial for the generalization in
mind. A natural number n is a set whose members are natural numbers;
indeed, n = {x C cwjx < n}, since x < n means x C n. In particular, as
a subset of the well-ordered set co, n is a well-ordered set. Suppose that
in C n. Then the initial segment s(m)t of n which is determined by m is
{x C njx < m } = m. That is, a natural number is a well-ordered set such
that the initial segment determined by each of its elements is equal to that element.
This is the property on which the extended counting process is based.
We now define an ordinal number as a well-ordered set a such that
for all >; in a, s(t) = t.

In addition to the natural numbers qualifying as ordinal numbers,
w does also. Moreover, w+, (w+)+, - - - are ordinal numbers, since we
can prove that if a is an ordinal number then so is a+. The proof goes
as follows. If >; C a+, then either t E a, in which case s(s) = i;, by
assumption, or else i; = a, in which case s(s) = a; that is, s(a) = a,

t This notation for initial segments of well-ordered sets is better suited for our present
exposition. We may recall at this point that an element of the initial segment determined by
a member f of a well-ordered set is called a predecessor of f.
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by the definition of order in a+. Anticipating notation from ordinal
arithmetic, we shall denote the ordinal numbers w, w+, (w+)+, by

w,w+1,w+2,
Applying (ZF8) with a as co and B(x, y) as y = co + x we may infer
that w, co + 1, co + 2, form a set. The union of this set and w we
shall denote by

w2.

Is w2 an ordinal number? The answer would appear to depend on the
choice of the definition of order in w2. Actually, the question is settled
automatically without any human intervention. The facts are these.
The condition that a well-ordered set a must satisfy in order to qualify
as an ordinal number, namely, s(E) = t for each t; in a, serves to specify
the collection of initial segments determined by the elements of a. But,
as the reader can easily show, even a simple ordering relation in a set is
uniquely defined by the collection of initial segments determined by the
elements of the set. (That is, if < and <' are simple orderings of a set
S and, for each x in P, the initial segment determined by x relative to < is
equal to that determined by x relative to <', then < = <'.) Hence,
since s(E) = t; means that the set of predecessors of l; must be the ele-
ments of , the only possible ordering of a which can lead to the con-
clusion that a is an ordinal number is the relation < such that for all t
and 'j in a, t < 71 iff t E 'n Now either this relation is a well-ordering
of a such that s(s) = t for each t in a or it is not. In the first case a is
an ordinal number and in the second case it is not. In particular, it is
now an easy matter to see that w2 is an ordinal number.

After the ordinal number w2 comes its successor w2 + 1, followed by
the successor w2 + 2 of w2 + 1, and so on. Next, after all terms of the
sequence with this beginning comes w3; this set is secured by the ap-
plication of another axiom of replacement. There follows in turn
w3 + 1, w3 + 2, and immediately after these comes w4. In this
manner we get successively co, w2, w3, . Then with the application
of another axiom of replacement we get an ordinal number which
follows the members of this sequence in the same sense that w follows
the natural numbers. This ordinal number is w2. Continuing in this
manner (and, continuing to anticipate the notation of ordinal arith-
metic) we can secure all "polynomials" in to as ordinal numbers, in a
manner parallel to that discussed in Example 2.7.10.

We derive next several basic properties of ordinal numbers.
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LEMMA 7.1. Each element of an ordinal number is itself an ordinal
number.

Proof. Let i be an element of the ordinal number a. Then i is a
subset of a, since from the fact that s(s) = i it follows that an ele-
ment of l is a predecessor of t, and hence an element of a. Therefore,
as a subset of a well-ordered set, t is well-ordered. Now consider an
element '7 of E. The initial segment determined by rt in i; coincides
with the initial segment determined by rt in a and, since the latter
is equal to rr, so is the former. Thus, in t, s(j) = n for all ri.

LEMMA 7.2. If two ordinal numbers are ordinally similar, then
they are equal.

Proof. Let a and 0 be ordinal numbers and suppose that f is an
ordinal similarity on a onto P. It is left as an exercise to prove by
transfinite induction that f Q) = t for each t in a. This implies that
a=P.
The next result asserts that every set of ordinal numbers is well-

ordered. As in Chapter 2, we first prove that any two ordinal numbers
are comparable. If a and (3 are ordinal numbers, then, as well-ordered
sets, either they are ordinally similar or one is ordinally similar to an
initial segment of the other. In the first case a = /3, by Lemma 7.2. To
examine the consequences of the other possibilities, assume that a is
ordinally similar to an initial segment of P. Now an initial segment of 0
is an element of /9 and hence an ordinal number, by Lemma 7.1. Using
Lemma 7.2 again, it follows that a is an element of fl; so we may write

a<P.
Similarly, if /3 is ordinally similar to an initial segment of of, then (3 < a.
Thus, for ordinal numbers a and /3, exactly one of a = (3, a < (3,
(3 < a holds. Moreover, the conditions a C P, a C /3, and a < I3 are
equivalent to each other. Since the proof of the well-ordering of any
set of ordinal numbers parallels that given for the earlier statement of
this result (Theorem 2.7.6), we shall leave it as an exercise. For com-
pleteness we record the conclusion again.

LEMMA 7.3. Any set of ordinal numbers is well-ordered.

To establish the next property of ordinal numbers it is convenient
to make a definition in connection with well-ordered sets. If a and b
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are well-ordered sets, we shall call b a continuation of a if a is an initial
segment of b and if the ordering of the elements in a is the same as their
ordering in b. For example, if a and P are distinct ordinal numbers,
then one of them is a continuation of the other. Now let C be a collec-
tion of well-ordered sets such thaf for each distinct pair of elements of C,
one. is a continuation of the other. This condition may be expressed by
saying that e is a chain with respect to continuation. It is a straight-
forward exercise to prove the following property of such a chain.

LEMMA 7.4. Let a be a collection of well-ordered sets that is a
chain with respect to continuation. Then there exists a unique well-
ordering of c, the union of C, such that c is a continuation of each set
(other than c) in the collection C.

LEMMA 7.5. Every nonempty collection of ordinal numbers has a
least upper bound.

Proof. Let C be a collection of ordinal numbers. Then e satisfies
the hypothesis of Lemma 7.4, as noted above. Hence the union y
of C is a well-ordered set such that y is a continuation of each t in C,
other than y itself. Actually, y is an ordinal number, since the initial
segment determined by an element of y is equal to the initial segment
determined by that element in whatever set of C it occurs. If E E C,
then E < y, which means that y is an upper bound for C. Indeed, y is
the least upper bound for C, since if S is an upper bound for C then
t C S whenever i; C C and, therefore, y C S.

As in the case of the Russell -paradox, the Burali-Forti paradox is
avoided in Zermelo-Fraenkel set theory by our ability to prove that
the troublesome set of the intuitive theory is not a set of the axiomatic
theory. In the present case we can argue that if there were a set whose
members consisted of all ordinal numbers, then we could form its least
upper bound. That ordinal number would be greater than or equal to
every ordinal number. But for each ordinal number there exists a
greater one-its successor, for example. This contradiction rules out
the existence of the proposed set.

In our concluding result we bring the present theory in still closer
agreement with the intuitive theory.

LEMMA 7.6. Each well-ordered set is ordinally similar to exactly
one ordinal number.
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Proof. The uniqueness is clear, since, for ordinal numbers, ordinal
similarity is the same as equality. The major step in proving the
existence of a suitable ordinal number for a given well-ordered set is
the preparation for an application of the principle of transfinite in-
duction to show that each initial segment of a well-ordered set is
ordinally similar to some ordinal number. Let a be a well-ordered set
and suppose that c is an element of a such that the initial segment
determined by each predecessor of c is ordinally similar to some ordinal
number. There exists a set e whose members are precisely all such
ordinal numbers (that is, which are ordinally similar to the initial
segment determined by some element of s(c). This follows from the
axiom of replacement corresponding to the set s(c) and the sentence
B(x, a), which says, "a is an ordinal number and s(x) = a." [This
sentence does satisfy the hypothesis of (ZF8) in view of Lemma 7.2.1
Now either c is the immediate successor of one of its predecessors or
c = lub s(c). If the first possibility is true and c is the immediate suc-
cessor of d, then s(c) = S+, where b is the ordinal number to which
s(d) is ordinally similar. If the remaining possibility is true, then
s(c) lub e. Therefore, in every case, s(c) is ordinally similar to an
ordinal number.

Now consider the well-ordered set i of all initial segments of a
(that we may do this follows from Lemma 7.4), and let j be that sub-
set consisting of those initial segments which are ordinally similar to
some ordinal number. Then the result obtained above comes to this:
If x is a member of i such that s(x) C j, then x C j. By the principle
of transfinite induction we then have j = I. That is, each initial
segment of a is ordinally similar to an ordinal number. From the
axiom of replacement corresponding to the set a and the sentence
B(x, a) used above, it follows that there exists a set D whose members
are precisely those ordinal numbers which are similar to an initial
segment of a. Then it is an easy matter to justify the conclusion that a
is ordinally similar to an ordinal number by the same argument em-
ployed above to show that s(c) has the same property.

For a well-ordered set a we shall symbolize the unique ordinal num-
ber which is ordinally similar to a (that is, its ordinal number) by

ord a.

If a is finite then ord a is the same as the natural number n(a) defined
in Exercise 4.9. The natural numbers are, of course, the finite ordinal
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numbers; the others are called transfinite. As in Chapter 2, those
ordinal numbers which have an immediate predecessor (as is the case
for each finite ordinal number other than 0) are called ordinal numbers
of the first kind and those (like co) which do not are called ordinal
numbers of the second kind or limit ordinals.

EXERCISES
7.1. Prove the assertion made in the text that an ordering relation in a set a

is uniquely determined by the collection of initial segments of the members of a.
7.2. Complete the proof of Lemma 7.2.
7.3. Prove Lemma 7.3.
7.4. Prove Lemma 7.4.

8. Ordinal Arithmetic

There are two standard approaches to definitions of arithmetical
operations for ordinal numbers: one relies on set theory and the other
on the principle of definition by transfinite induction. The set-theoretical
approach is based on formulating arithmetical operations in terms of
operations of set theory; illustrations are provided by the definitions in
Section 2.6 of addition and multiplication for order types. The inductive
approach follows the pattern we employed to define operations for
natural numbers with the principle of definition by induction replaced
by that of definition by transfinite induction. Whichever approach one
elects, the definitions in one can be proved as theorems in the other.

Illustrations are suggested by results which are at hand. For example,
from the inductive definitions of addition and multiplication for nat-
ural numbers, the reader proved in Exercise 4.9 that the number of
elements in the cartesian product of two finite sets a and b is equal to
n(a) n(b). This result could be used instead to define multiplication
of natural numbers. That is, for natural numbers r and s we could
define their product by choosing sets a and b such that n(a) = r and
n(b) = s and writing r s = n(a X b). Since we wish to maintain as
close contact with intuitive set theory as possible, we shall emphasize
the set-theoretical approach.

As a preliminary to defining operations for ordinal numbers, we
recall the technique introduced in Section 2.5 for obtaining from two
given sets a and b, possibly not disjoint, sets which have the same struc-
tural features as a and b and which are disjoint: replace a by a X 101
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and b by b X 111. The obvious one-to-one correspondence which exists
between such pairs as a and a X (0) may be used to transfer whatever
structure is assigned to a to its replacement. This leads to the conclusion
that if we are given two sets having possibly some structure we may as-
sume at the outset, without loss of generality, that they are disjoint.
This conclusion can be generalized to arbitrary families of sets. If
{a:lx C i } is a given family, then replace each ax by ax X {x} to obtain
a disjoint family which may be assigned all features of the original.

The definition of addition for ordinal numbers follows the same
pattern as that given in Section 2.6 for addition of order types. Let a
and b be disjoint well-ordered sets. In their union a U b we define an
ordering relation as follows : Pairs in a and pairs in b are ordered ac-
cording to the given orderings in a and by respectively, and each element
of a precedes each element of b. The assumption that a and b are well-
ordered implies that a U b is well ordered. This well-ordered set we
call the ordinal sum of the well-ordered sets a and b.

The concept of the ordinal sum of two well-ordered sets extends
directly to an arbitrary (well-ordered) family of well-ordered sets.
First, a word about the notation for such families. In view of Lemma 7.6
we may take the indexing set to be an ordinal number. We shall do
this and use notation like

{ael E X}

for such a family. If, then, { aEI C X) is a disjoint family of well-ordered
sets, indexed by (the ordinal number) It, we define its ordinal sum as
U tat ordered as follows: If x and y are members of the union and
in the same set at, then the order in at prevails; if x E at and y C all,
where z; < 77, we take x < y.

To define the sum of ordinal numbers a and ft we introduce disjoint
well-ordered sets a and b such that ord a = a and ord b = ft. Let c be
the ordinal sum of a and b. The sum, a + I3, is defined to be ord c. It is
left as an exercise to prove that a + 3 is independent of the choice of
the sets a and b (provided, of course, that each has the correct ordinal
number). Analogues of this remark hold for the other arithmetic opera-
tions for ordinal numbers; they will be omitted.

The definition of sum extends without difficulty to an arbitrary family
{atlE C X} of ordinal numbers. Let {atlt C X} be a disjoint family of
well-ordered sets at such that ord at = at for each E and let a be the
ordinal sum of { atl i E It I. The sum Ztat is defined to be ord a.
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The ordinal product of two well-ordered sets a and b is defined to
be the cartesian product a X b ordered as follows:

(x, y) < (x', y') iffy < y' or y = y' and x < x'.

It is left as an exercise to prove that an ordinally similar set (and
hence an alternative definition of the ordinal product of a and b) can
be obtained as follows. Let a,, = a X { y } for each y in b, and order a,, in
the obvious way. Then the family {avIy C b} is disjoint and its ordinal
sum is ordinally similar to a X b. This approach to the ordinal product
of a and b has intuitive appeal since it corresponds to adding a to itself
b .times.

To define the product of ordinal numbers a and lg we introduce
well-ordered sets a and b such that ord a = a and ord b = /3. Let c be
the ordinal product of a and b. The ordinal product, a#, is defined to
be ord c. For properties of finite products and sums of ordinal numbers
we refer the reader to Sections 2.6 and 2.7.

Since it is not necessary, for the definition of the product a# of the
ordinal numbers a and #, to employ disjoint well-ordered sets whose
ordinal numbers are a and P, it is permissible to choose the most easily
available well-ordered sets whose ordinal numbers are a and #-namely,
a and S! Similarly, for the definition of product for a family of ordinal
numbers it is not necessary to use disjoint "representatives." We take
advantage of this fact by choosing ordinal numbers to be their own rep-
resentatives. The first step in defining the product of a family {aelt C X}
of ordinal numbers is to form the cartesian product of this family of
well-ordered sets. [We recall that an element of this set is a function f
on X such that f Q) C at. I Let 61 be the subset of this cartesian product,
which consists of all functions which have only a finite number of values
different from 0. We order P in reverse lexiographical ordering. Let f
and f' be two distinct members of 6'. Then they take different values
for only a finite number of arguments, and hence there exists a last
argument, to, for which f(l o) 0 f'(to). If f (i o) < f'(o), then we set
f < f'; if f'(to) < f(Eo), then we set f' < f. It is left as an exercise to
prove that this is a well-ordering of 61. We now define the product
IItat to be ord 61.

Among the immediate consequences of this definition we note that
if X (the indexing set) is the empty set, then IItat = 1, since the Car-
tesian product of the family is {0 1. Vprther, the product of a nonempty
set of ordinal numbers is equal td O if at least one of the factors is equal
to 0.
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Finally, we define exponentiation as iterated multiplication. If a and
13 are ordinal numbers, then we set

ap _ lEE$aE,

where at = a for all E E 13. That is, aP is the ordinal number of the
set of all functions on (3 into a which assume only a finite number of
values different from 0, ordered in reverse lexiographical ordering.
Among the laws of exponents which hold there are the following:

a' = a for all a,
ao= 1 for all a,
0P=0 forall13> 1,
1P = I for all fl,

aP+r = agar for all a, y,
aar = (as)Y for all a, y.

From the first and the fifth of these properties it follows that a .a
... . a (n factors) = an for each natural number n (including n = 0).
Since multiplication of ordinal numbers is not commutative, no an-
alogue from elementary arithmetic to the identity (ab)c = a°b° can be
expected. A comparison of (w2)2 = w(2w)2 = w22 and w222 = w24
settles the matter.

We conclude our introduction to the theory of ordinal numbers by
listing a "few" of them in order. Each number which appears immedi-
ately after a sequence of three dots is the least upper bound (indeed,
the limit, in the sense explained in Example 2.7.11) of those which
precede it; the letters of the English alphabet which appear denote
finite ordinals. The creation by Cantor of this so-called series of ordi-
nals certainly ranks as an outstanding achievement:
0, 1, ...,n, ... w,w+1, --,w+n, -- w2, w2 + 1, .. w3,

wn+m, ... w2, ...,w2+wn+m, ... w2n, ... wa, ... wn,
Wnrnn + wn-lmn_1 + ... + m0, Wm, ... WWn, ... WW+l

. (WW)n, . . . (WW)W, . . . ((WW)W)W, . .

The next ordinal number after all of these is usually denoted by ea.
It may be "reached" more directly as the least upper bound of the
sequence 1, W, wW, (wW)W, ... ; the proof that it is a set is left as an exer-
cise. Further ordinal numbers, beginning with to, include
to, to + 1, . . 0 + w, ... to + w2, ... E0 + W2, ... to + Co.,

... e02, ... eow, ... cow,, ... eo. ... .. .

Cantor called any solution of the equation we = e an epsilon number.
It is left as an exercise to prove that to is the least epsilon number.
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EXERCISES
8.1. Show that the definition of order which was adopted for the union of

well-ordered sets a and b may be stated as follows. If p and a are the given well-
ordering relations in a and b, respectively, then order a U b by p U a U
(a X b).

8.2. Show that the sum a + Q of two ordinal numbers is independent of the
choice of well-ordered 'sets a and b such that ord a = a and ord b = Q.

8.3. Show that the ordinal product of two well-ordered sets a and b, as de-
fined in the text, is ordinally similar to the ordinal sum of the family {a,,I y C b}.

8.4. Prove that the ordering assigned to the subset tp of the cartesian product
of a family {atiE C X} is, in fact, a well-ordering.

8.5. Prove each of the laws of exponents displayed in the text.
8.6. Show that e0 is the least epsilon number.

9. Cardinal Numbers and Their Arithmetic

Although in Section 2.3 we gave a definition of the concept of a
cardinal number, we emphasized there that we would rely on only that
consequence of the definition to the effect that

card a = card b iff a r b.
Using just this property of cardinal numbers it is possible to reproduce,
with the framework of Zermelo-Frankel set theory,

(i) the definition of the order relation < for cardinal numbers, the
proof (after the Schroder-Bernstein theorem is established) that
card a < card b if a < b, and that of Cantor's theorem;

(ii) the definitions of addition and multiplication for cardinal num-
bers (Section 2.5) and the proofs of the properties of these
operations stated in Theorems 2.5.1 and 2.5.2;

(iii) the definition of exponentiation and the proofs of those properties
stated in Theorem 2.5.3.

Defining a cardinal number as finite if it is the cardinal number of a
finite set and as infinite if it is the cardinal number of an infinite set,
we may continue by proving the following results: The arithmetic of
finite cardinal numbers is the familiar finite arithmetic and, if u is an
infinite cardinal number, then u u = u and u + u = u.

We now consider a suitable definition of the cardinal number of a set.
From earlier results we know that every set is similar to some ordinal
number. In general, a set is similar to many ordinal numbers. The result
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on which the von Neumann definition of the cardinal number of a set
leans is that for each set a, the ordinal numbers which are similar to
a form a set. We begin the proof by observing that it is possible to find
an ordinal number greater than all ordinal numbers similar to a. An
ordinal number t9 which is similar to 6'(a) will serve. Then, for each ordi-
nal number a similar to a, the set a is less numerous than the set 9,
and hence card a < card p. Hence, it is not the case that 0 < a, and
therefore a < P. In turn, this means that a C S. Thus, P is a set that
contains every ordinal number similar to a and the existence of such a
set implies that the ordinal numbers similar to a form a set.

In view of this result, a natural choice for card a is the least ordinal
to which a is similar. This is the motivation for a consideration of the
following definition : A cardinal number is an ordinal number a such
that if 0 is an ordinal number similar to a, then a < 16. That is, a cardi-
nal number is an ordinal number which is not similar to any smaller
ordinal number. If a is a set, then card a, the cardinal number of a, is the
least ordinal similar to a. That this definition is satisfactory follows from
the fact that we can prove that card a = card b if a '' b. Indeed,
since each set is similar to its cardinal number, it follows that if card a =
card b, then a - b. For the converse, we assume that a - b and infer
that card a = card b. Since card a is the least ordinal similar to a, cer-
tainly card a < card b and, upon interchanging a and b in this argu-
ment, also card b < card a. Hence, card a = card b.

Since a finite ordinal number (that is, a natural number) is not similar
to any different ordinal number, the set of ordinal numbers similar to a
finite set is a unit set. Hence, the cardinal number and the ordinal num-
ber of a finite set are the same. Notice that we are now entitled to infer
from the similarity of Y(a) and 2a, where a is a set, that card P(a) = 2a,
since we now know that 2 is a cardinal number. Also, we may state
Cantor's theorem in its familiar form: a < 2a.

The above inequality brings to mind one of the last two questions
which should be raised regarding the definition of cardinal number. We
recalled at the beginning of this section that on the basis of the identity
that card a = card b if a r., b, an ordering relation can be defined for
cardinal numbers and that it follows from this definition that card a <
card b iff a < b. Now ordinal numbers have already been outfitted with
an ordering relation. Fortunately, there is no collision of the two pos-
sible meanings of card a < card b, since they coincide. We leave the
details as an exercise. The other question concerns the status of Cantor's
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paradox. Its fate is settled in much the same way as the Burali-Forti
paradox. Every set of cardinal numbers, as a set of ordinal numbers,
is well-ordered. Moreover, we know that every set of cardinal numbers
has an upper bound and that for every set of cardinal numbers there
is a cardinal number greater than each member of the set (see Sec-
tion 2.9). It follows that there is no largest cardinal number or, what is
equivalent, there is no set that consists precisely of all the cardinal
numbers.

As the smallest transfinite ordinal number, co is a cardinal number
and, when playing the role of a cardinal number, is denoted by bto.
Since Theorem 2.9.3 (every set of cardinal numbers is well-ordered),
holds in Zermelo-Fraenkel set theory, we can define the alephs in gen-
eral as in Section 2.9. The immediate successor, Ki, of 14o in the order-
ing of cardinal numbers may be described as the least uncountable
ordinal number, or as an uncountable well-ordered set each of whose
initial segments is countable. It may come as a surprise to learn that
this ordinal number is greater than all of those explicitly named in
Section 8, for they are all countable!

EXERCISES
9.1. Give definitions of addition and multiplication for an arbitrary family

of cardinal numbers by imitating corresponding definitions for ordinal num-
bers.

9.2. Show that the two possible meanings of card a < card b coincide.

10. The von Neumann-Bernays-Godel Theory of Sets

In this section we shall describe the theory in question (and, for
brevity, refer to it simply as von Neumann set theory) only to the point
where we can indicate the essential differences between it and Zermelo-
Fraenkel set theory. The original version of von Neumann set theory
appeared in von Neumann (1925, 1928a, 1929), and in simplified
form in R. M. Robinson (1937). Since a distinguishing feature of this
original version was its adoption of the notion of function, rather than
that of set, as primitive, it differed considerably from other axiomatiza-
tions of set theory. In a series of seven papers, beginning in 1937 (see
References), P. Bernays formulated a modification of the von Neumann
approach which brought it in much closer contact with Zermelo set
theory. In turn, in Godel (1940) the theory is further simplified.

One essential difference between the von Neumann theory and the
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Zermelo-Fraenkel theory reflects a difference in attitudes toward the
question of how to cope with the "too large" sets of intuitive set theory.
In the Zermelo theory it is possible to prove the existence of most of
the sets which are necessary for mathematics, but the axioms which
are concerned with the existence of sets are so designed that it seems
impossible to construct any "troublesome" sets. In brief, the theory S
is a conservative one! The von Neumann theory, on the other hand,
reflects the attitude that it is not the existence of too large sets as such
which leads to contradictions but rather their being taken as members
of other sets. In the von Neumann theory a technical distinction is
drawn between sets and classes. Every set is a class, but the converse is
not true. Those classes which are not sets are called proper classes and
their distinguishing feature is that they are not members of any other
class. The class of all ordinals, for example, exists, but it is a proper
class. Thus the Burali-Forti paradox cannot be constructed, since it
requires that the class of all ordinals be a member of a class. The other
paradoxes meet with a similar fate.

In Godel (1940) three primitive notions are adopted: class, set, and
the binary relation of membership. A slight modification of the theory
allows one to reduce the number of primitive notions to one-the
binary relation C. Then elements of the union of the domain and the
range of C are called classes and elements of the domain are called
sets. The axioms of the theory, as stated in Gi del (1940), fall into sev-
eral groups. The first consists of the axioms of extension and that of
pairing. Using lower-case letters as set variables and capital letters as
class variables, the axiom of extension is

(u)(uEXHuCY)-4X=Y.
The axiom of pairing provides for the existence of the set whose members
are just the sets x and y. This is formulated as

(x)(y)(3z)(u)(u C z H u = x V u = y).

The eight axioms of the second group are concerned with the exist-
ence of classes. These axioms, which are due to Bernays, replace an
axiom schema in the original von Neumann theory. From them Bernays
proved the general existence theorem (a metatheorem), which asserts
that for any formula F(x) which contains no bound class variables there exists a
class Y that contains just those x's which satisfy F(x). This result, which is
referred to as the class theorem, bears a strong resemblance to the
principle of abstraction of intuitive set theory; the sole difference is
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that "defining conditions" determine classes and not necessarily sets.
The class theorem yields as a by-product the fact that classes in the
von Neumann theory play the role that formulas do in the Zermelo-
Fraenkel theory.

The remaining axioms of the von Neumann theory coincide with
the remainder of those for S [that is, (ZF4)-(ZF9) ], with the one im-
portant distinction that none of the former are axiom schemas. For
example, in place of (ZF8), the axiom schema of replacement, there is
the axiom of replacement which is the formula

(x) (y) (z) (((x, y) E X A (x, z) C X) --*y = z) -->
(3y)(x)(x Ey - (3w) (w E z A (w, x) E X))

Thus, by way of the theorem schema described above, this axiom yields
all instances of the axiom schema (ZF8). This brings us to the second,
and last essential difference between the two theories: von Neumann
set theory is finitely axiomatized. That is, no axiom schema of set
construction is required; instead, a finite number of specific set and
class constructions is adequate.

BIBLIOGRAPHICAL NOTES
In Fraenkel (1961) general set theory is developed at a level which is be-

tween that of Chapters 1 and 2 and that of this chapter. Fraenkel's excellent
book, Abstract Set Theory, is a thoroughly revised (and greatly improved) edition
of an earlier book. The book by Fraenkel and Bar-Hillel (1958) complements
Abstract Set Theory in the same way that the present chapter complements our
earlier coverage of intuitive set theory. In addition, it considers other approaches
(for example, Quine's New Foundations) to set theory. Zermelo-Fraenkel set
theory is also expounded in Suppes (1960). An interesting feature of this book
is an elegant unorthodox treatment of finite sets by means of Tarski's definition
(see Exercise 2.3.14), which allows Suppes to develop the theory of finite sets
before the theory of finite ordinals. Another treatment of Zermelo-Fraenkel set
theory appears in Halmos (1960). This is a beautiful presentation.

An outline of von Neumann-Bernays-Godel set theory is given in Godel
(1940) and in Bernays and Fraenkel (1958). The latter book presents a modi-
fication of the system developed by Bernays in the series of seven papers men-
tioned in the text. For a high-level development of transfinite arithmetic
beginning with the theory of ordinal numbers, H. Bachmann (1955) should
be consulted.



CHAPTER 8 Several Algebraic

Theories

I T I S PER H A P S in algebra that the axiomatic method has scored its
greatest successes. The majority of axiomatic theories which are re-
garded as belonging to algebra are noncategorical. This is by design,
since the goal of algebra is a systematic analysis of various combina-
tions of central features common to a variety of specific algebraic sys-
tems. This modern approach to algebra yields theorems which not only
illuminate a multitude of classical examples by displaying them in the
most general light without foreign hypotheses, but also it contributes
formalism and powerful tools which are indispensable to a large part
of mathematical research, including that in the theory of numbers,
algebraic geometry, functions of several complex variables, integration
theory, and topology. Thus, algebra is not merely a branch of math-
ematics, for it plays within mathematics a role analogous to that which
mathematics itself has played with respect to physics for centuries.

As is the case with most branches of mathematics, it is foolhardy to
attempt a definition of algebra. It is possible, however, to suggest a
characterization by describing basic features of those theories which
may be called "algebraic theories," that is, axiomatic theories which, it
is generally agreed, belong to the province of algebra. Some such fea-
tures are discussed in Section 1. The theory of Boolean algebras qualifies
as an example and serves to illustrate some of the concepts introduced.

The brief introduction to semigroups which appears in Section 2 is
included simply because this theory can be used as a vehicle to intro-
duce a variety of definitions that are applicable to the algebraic theories
with which the remainder of the chapter is concerned. Each of these
theories, apart from that of groups, had its origin in one of the number
systems constructed in Chapter 3. That is, each is founded' on the basic
properties of one of the system of integers, the system of rational num-
bers, the system of real numbers. When it is realized that these theories

321
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form the backbone of modern algebra, the fundamental role played by
the familiar number systems in stimulating the development of modern
algebra becomes apparent. Exposing the role of the familiar number
systems as a source for algebraic theories is one goal of this chapter.
The other is to provide vyays and means for characterizing, in turn,
these number systems as models of certain algebraic theories. These
characterizations are presented in the last three sections of the chapter.

1. Features of Algebraic Theories

Ordinarily, algebraic theories are presented as informal theories
within the context of set theory. That is, as explained in Section 5.3,
an algebraic theory is formulated in terms of a nonempty set X and
certain constants associated with X. These constants may be of various
types : elements of X, subsets or collections of subsets of X, unary opera-
tions on X (that is, functions on X into X), binary relations or operations
in X, and so on. Collectively, the constants serve as the basis for imposing
a certain structure on X. The structure is given in the axioms-that is,
the properties assigned to X and the constants. It is principally the
form of the axioms that distinguishes algebraic theories among ax-
iomatic theories in general. The axioms pertaining to binary operations
imitate, in part at least, the basic properties of addition and multipli-
cation and include, possibly, the existence of interrelations such as dis-
tributive laws. Those pertaining to any binary relations present may
imitate properties of "less than" for number systems. If unary operations
are present, they are often called (left or right) operators.

As an indication of the form that axioms pertaining to operators
might have, the properties of scalar multiplication in an elementary
treatment of vector algebra are suggestive. These include

a(a + f) = as + a$,
(a+b)a=act +ba,

a(ba) = (ab)a
for all vectors a and i8 and all scalars (real numbers) a and b. The first
of these is a property of individual scalars (left operators). In contrast,
the others are interrelations between combinations of operators and
combinations of vectors and, as such, presuppose the existence of opera-
tions for the set of scalars. In general, a set of operators may or may not
have some assigned structural features.

The theory of Boolean algebras qualifies as an algebraic theory. If
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the theory is formulated as in Theorem 6.3.1, then the constants associ-
ated with the basic set B are one binary operation and a single operator.

We turn next to the description in general terms of two notions which
occur so consistently in algebraic theories that they may be considered
as serving to further delineate algebraic theories. If we agree that by
an algebra is meant any model of some algebraic theory, then one of
the notions is that of a subalgebra of an algebra. This requires two pre-
liminary definitions. Let f be an operation in a set X and A be a non-
empty subset of X. Then A is said to be closed under f if the restric-
tion off to A X A is an operation in A or, in other words, the range of
fjA X A is included in A. If A is closed under f, the operation f IA X A
is said to be that induced in A by f. Although f jA X A Of (assuming
that A C X), if instead of "f " a familiar symbol like "-I-" or " " is used
for the initial operation, it is customary to designate that operation
which it may induce in a subset by the same symbol. Next, let g: X -+- X
and A be a nonempty subset of X again. We shall say that A admits
g if g [A19 A. Now suppose that (X, ) is an algebra having X as its
basic set and that A is a nonempty subset of X which admits each oper-
ator on X and is closed under each operation in X. Then it may be the
case that A, together with the constants induced in it by those of X, is
a model of the theory of which (X, ) is a model. In this event, (A, )
is called a subalgebra of (X, ).

According to the foregoing, if (X, ) is a model of an algebraic
theory, then subsets of X which are closed under the operations in X
and so on provide a potential source of further models of the same
theory. Another possible means for deriving further models from given
models of an algebraic theory is by way of congruence relations. This
notion for an arbitrary algebra is a direct generalization of that given
in Section 6.4 of congruence relations for Boolean algebras. A congru-
ence relation on an algebra (X, ) is an equivalence relation 0 on
X such that if * is a binary operation in X, then for all a, b, and c in X,

(CI) a9bimpliesc*aOc*banda*cOb*c
and, if f is an operator on X, then for all a and b in X,

(C2) a 0 b implies f(a) Of(b),
and, if < is an ordering relation, then for all a, b, c, and d in X,

(C3) a 0 b, c 0 d, and a <c imply b <d.
Upon reviewing the discussion of congruence relations for Boolean alge-
bras it should be clear that requirements (Cl)-(Ca), whenever applicable,
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are sufficient (and, indeed, necessary) conditions that each operation
and so on defined for X induces a corresponding constant for X/0 by
way of representatives of 8-equivalence classes (that is, if * is a binary
operation in X, defining ff * b to be a _*b, and so on). If 0 is a congruence
relation on the algebra ( X , ), then it may be the case that X/0,
together with the constants induced by those associated with X in the
way described, is a model of the theory at hand. In this event, (X/9, )

is called a quotient algebra of ( X , ).
In conclusion, it will do no harm to rephrase for algebras in general

a remark made earlier for Boolean algebras. Namely, the description
of any algebra (X, ) includes (usually implicitly) an equality relation
on X and this is taken to be a congruence relation on X. That is, equal-
ity is assumed to satisfy whichever of (C1)-(C3) are applicable.

2. Definition of a Semigroup

A semigroup (with neutral element) is an ordered triple (X, *, e),
where X is a set, * is an associative binary operation in X, and e is a
member of X such that

e* x= x* e = x
for all x in X. Our sole purpose in touching on this theory is to derive
a few basic properties and introduce some terminology and notations.
This will prove to be efficient, since we shall find a variety of applica-
tions for these items later. It is with the diversity of the applications
in mind that we have adopted the neutral symbol "*" for the operation
in X.

The property enjoyed by the element a of the semigroup (X, *, e) char-
acterizes this element, since if e' * x = x * e' = x for all x, then e' * e = e
and e' * e = e', whence e = e'. We shall call e the neutral element
for the operation in X.

EXAMPLES
2.1. If A is a nonempty set, then (P(A), U, 0) and (6'(A), 0, A) are semi-

groups.
2.2. If, as usual, N is the set of natural numbers, then 0) and (N, , 1)

are semigroups.
2.3. If A is a nonempty set, then (AA, o, iA) is a semigroup.

An algebra (X, ) is often identified by merely its basic set, if no
confusion can arise. For example, we shall often use the term "the semi-
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group X" in place of "the semigroup (X, *, e)." If there is need to men-
tion the operation, "X is a semigroup under *" may be used in place
of "(X, *, e) is a semigroup." For example, we may say "the set Z of
integers is a semigroup under addition" in place of "(Z, +, 0) is a
semigroup."

In subsequent instances of semigroups the notation for the composite
of a and b will usually be a + b (read: the sum of a and b) or ab (read:
the product of a and b). In the first case we say that we have an addi-
tive operation and in the latter case, a multiplicative operation. The
neutral clement for an additive operation is always denoted by "0"
and called the zero element of the semigroup; the neutral element for a
multiplicative operation is usually designated by "I" and called the
unit or identity element of the semigroup. One theorem that we have
already proved for a semigroup is the general associative law (Theo-
rem 2.2.2), which asserts that all composites that can be associated with
an n-tuple (a,, a2, , an) of elements of a sernigroup are the same cle-
ment of the semigroup. For an additive operation this element is de-
noted by

a,+a2+ +an or 2;;'_j"r ac
while for a multiplicative operation it is denoted by

a,a2 ... a or II,""_, a;.

If a,, a2, , an are all equal to the same element a, then the composite
of (a,, a2, , an) is denoted by "na" and "a"" in the additive and multi-
plicative cases, respectively. For n = 1 we agree that both na and a" are
simply a.

We extend the definition of na and an to all natural numbers by defin-
ing Oa to be 0 and a° to be 1-that is, the neutral element in each case.
Then, for all natural numbers m and n and all elements a of a semi-
group X,

(1) Oa = 0, 1a = a, (m + n) a = ma + na, (mn)a = m(na),

if the operation in X is additive. If the operation is multiplicative, then

(2) a° = 1 a' = a, am+n = ama" amn = (a-) n.

These formulas follow from our definitions and the general associative
law.

A semigroup (X, *, e) is commutative or Abelian iff a * b = b * a
for all a and b in X. For commutative semigroups we have the general
commutative law stated in Exercise 2.2.4: If a,, a2, ", a" are elements
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of a commutative semigroup and if 1', 2', , n' is some rearrangement
of the numbers 1, 2, , n, then

a, * a2 * ... *a, = a,. *a2 * . *a",.

From this it follows easily that for a commutative semigroup the string
of formulas (1) may be supplemented by

(3) n(a+b) =na+nb,
and those in (2) by
(4) (ab)" = a"b".

Further notation and computational rules enter in connection with
our next definition. An element a of a semigroup X is invertible if
there exists an element a' of X such that a * a' = a' * a = e. In that
event there is just one such element a' with this property. For if with a"
we can also demonstrate that a is invertible, then

all =all *e=all *(a* a')=(all *a)*a'=a*a'=a'.
The element a' is the inverse of a. If a is invertible and a' is its inverse,
so that a * a' = a' * a = e, then these equations demonstrate that a' is
invertible and that a is its inverse. Another important property of
invertible elements is proved next.

THEOREM 2.1. If a and b are invertible elements of a semigroup
(X, *, e), then a * b is invertible. If a' and b' are the inverses of a
and b, then b' * a' is the inverse of a * b.

Proof. It is sufficient to show that (a * b) * (b' * a') = e and
(b' * a') * (a * b) = e. The first of these, for example, is shown as
follows :

(a*b)*(b'*a') = a*(b*b')*a' = a*e*a' = e.

COROLLARY. If a,, a2, a" are invertible elements of a semi-
group and a,', a2, an their inverses, then al * a2 * * a" is in-
vertible and aR * aa_, * * al' is its inverse.

The notation involved in discussing further properties of invertible
elements is sufficiently different in the additive and multiplicative cases
as to warrant separate treatments. Let us consider an additive notation
first. If a is an invertible element of a semigroup (X, +, 0), then negative
multiples of a can be defined. Namely, we observe that if a' is the inverse
of a (thus, a + a' = a' + a = 0); then
(5) ma = (m + 1)a + a'
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for all nonnegative m. This equation we take as the basis for an inductive
definition of ma for negative m. Then we observe that the third formula
in (1) above is true for any fixed m and n = 0; it can be proved for all
natural numbers n by induction from n to n + 1 and for all negative n
by induction from n + I to n, using the following consequence of (5) :

(m + 1)a = ma + a.
One instance of the formula thus obtained is

na + (- n)a = Oa = 0 = (- n)a + na
for an.arbitrary n. This means that for all n, na is invertible and (-n)a
is its inverse. It follows that m(na) and (mn)a are defined for every m.
The equality of these two elements for arbitrary m and n can then be
proved by the two inductions used before. Thus the fourth formula in
(1) and thereby all formulas in (1) hold for all integers m and n.

If a is an invertible element of (X, +, 0), then, according to (5),
(-1)a is the inverse of a. We abbreviate "(-1)a" by "-a" and call it
the negative of a. The earlier result that the inverse of the inverse of a
is equal to a then takes the form

-(-a) = a
and Theorem 2.1 translates into

-(a + b) _ (-b) + (-a)
for invertible elements a and b. For an arbitrary b and an invertible ele-
ment a of X, b + (-a) C X; this element will be designated by b - a.
Thus, (b - a) + a = b. Further, the element (-a) + b will be denoted
by -a + b, so that a + (-a + b) = b. These definitions lead to the
following computational rules which are easily verified :

-(a - b) = b - a, -(-a + b) = -b + a.
Finally, if the semigroup is commutative, (3) holds for arbitrary n.

All the foregoing definitions and results have multiplicative analogues.
The starting point for their derivation is the observation that if a' is the
inverse of a, then
(6) ain = a?%+Ia.

for all nonnegative m. This equation we take as the basis of an inductive
definition of a'" for negative m. It is left as an exercise to verify that the
third and fourth equations in (2) above are true for arbitrary integers
m and n. According to (6), a-' is the inverse of a. Moreover,

(a-')-' = a, (ab)-' = b-'a-1,
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and, if the semigroup is commutative, (4) holds for all integral values
of n.

EXAMPLES
2.4. The semigroup 0) is commutative; 0 is the only invertible ele-

ment. In contrast, each element of the semigroup (Z, +, 0) is invertible.
2.5. In the multiplicative semigroup Z the only invertible elements are 1

and -1.
2.6. Let A be a nonempty set. Then ((P(A), +, 0), where + is the symmetric

difference operation, is a commutative semigroup. Each element B is invertible;
indeed. - B = B.

2.7. The semigroup of all mappings on a set of at least two elements into
itself (see Example 2.3) is not commutative. The invertible elements are the
one-to-one and onto mappings.

EXERCISES
2.1. Let be an associative operation in a nonempty set X. An element a in

X such that x a = x for all x is a right identity element.

(a) Give an example of such a system that has more than one right identity
element.

(b) Show that if more than one right identity element is present in X, then
no identity element is present.

2.2. In a nonempty set X introduce the operation (a, b) -} ab = a. Show
that this is an associative operation and that every element is a right identity.
When is X a semigroup?

2.3. Show that (N, *, 0), where a * b = a + b + ab, is a semigroup.

2.4. We define NO) to be the set of all objects of the form (a d) where
a, b, c, d C N. A multiplication is defined for these elements as follows::

a b a' b' _ aa' + bc' ab' + bd'
(c d) (c' d') - (ca' + dc' cb' + dd'

Show that N(" is a semigroup under this multiplication. What elements are
invertible? Defining an element x of a semigroup as idempotent iff x' = x,
determine the idempotents of N(').

2.5. Establish each of the identities appearing in (1) and (2) in the text for
natural numbers m and n.

2.6. Establish the identities (3) and (4) for commutative semigroups.
2.7. Give a detailed account of the extension of the identities in (1) to the

case of arbitrary integers m and n.
2.8. Give a detailed account of the extension of the identities in (2) to arbi-

trary integers m and n.
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3. Definition of a Group

In spite of the repetition which results, we start afresh with the theory
of groups for the sake of completeness. Our initial formulation is the
one appearing in Exercise 5.4.15.

A group is an ordered triple (G, , e), where G is a set, is a binary
operation in G, e is a member of G, and the following axioms are satis-
fied.

G,. is an associative operation.
G2. For each a in G, e a = a.
G3. For each a in G there exists a' in G such that

Two properties of a group follow directly from the axioms: An ele-
ment e satisfying G2 is a neutral element for the operation (and hence
is unique) and, each element of G is invertible. For proof, let a be a
member of G. By G3 there exists an element a' in G such that a'a = e
and there exists in element a" in G such that a"a' = e. Then

aa' = e(aa') _ (a"a')(aa') = a"((a'a)a')
= a"(ea') = a"a' = e.

Then e is a neutral element since, for any a, ea = a by G2 and ae = a,
since

ae = a(a'a) = (aa')a = ea = a.
Further, a is invertible since aa' = a'a = e. Thus, we have proved the
following result.

THEOREM 3.1. If (G, , e) is a group, then it is a semigroup
such that each element is invertible.

In accordance with conventions introduced for semigroups, if multi-
plicative notation is used for a group operation we shall write "1"
for the identity element and "a-"' for the inverse of a. If additive nota-
tion is used instead, then "0" and "-a" will be used in place of "1"
and "a-'." In either case the definitions and properties pertaining to
powers and multiples given in Section 2 are available for use.

The converse of Theorem 3.1 is obviously true and consequently
another formulation of the theory of groups is at hand: A group is a
semigroup such that each element is invertible. We prefer the initial
one, however, since it is clearly a weaker formulation, which means
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that there are fewer steps in the verification that a given system is a
group.

The set of axioms in the explicit formulation of the theory of groups
as a semigroup in which each element is invertible is simply the result
of supplying the "left-right" symmetry which the initial formulation
lacks. This symmetrical set of axioms is, like {G1, G2, G$}, independent.
A third formulation in which symmetry is an inherent part is given
next.

THEOREM 3.2. An ordered pair (G, ), where G is a set and is

a binary operation in G, defines a group if

Go. G is nonempty,
G1. - is associative,
G4. each of the equations a x = b and y a = b has a solution

in G for all elements a and b in G.

Proof. Assume that (G, -, 1) is a group. Then obviously (G, ) satis-
fies Go and G1. Moreover, G.1 is valid since, for given elements a and 6
in G, a(a 'b) = b and (bar')a = b.

For the converse, let (G, ) be a system satisfying Go, G1, and G4.
According to Go there exists an element c in G. According to G4 there
exists an element e in G such that ec = c. Moreover, by G4, if a is
any element of G, then there exists an element d in G such that
cd = a. Hence

ea = e(cd) = (ec)d = cd = a,

so e satisfies Ga. As for G3, it is a consequence of the solvability of.
xa = e for each a. Hence, (G, , e) is a group.

Each of the equations ax = b and ya = b has a unique solution in a
group. This is an immediate consequence of

THEOREM 3.3. For all elements a, b, and c in a group, each of
ab = ac and ba = ca implies that b = c.
Proof. Assume, for example, that ab = ac. Then a'(ab) = a '(ac),
whence b = c.

If finiteness is assumed for the set G in Theorem 3.2, then G4 can be
replaced by the, in general, weaker cancellation laws.

THEOREM 3.4. A pair (G, ), where G is a finite set and is a
binary operation in G, defines a group iff
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Go.

G,.
G5.

G is nonempty,
is associative,

each of a b = a c and b a = c a implies that b = c.

Proof. In view of Theorem 3.2 it is sufficient to prove that G5 implies
G9 in the presence of Go and G1. Let a be an element of G and con-
sider the mapping fa: G ; G such that fa(x) = ax. By G5, fa is one-
to-one and hence onto, since G is finite. That is, for each b in G,
ax = b has a solution in G. The solvability of ya = b is shown sim-
ilarly.

We forego giving examples of groups until we have given several
more definitions. If for group elements a and b, ab = ba, then a and b
commute; if every pair of elements of a group commute, then the group
is called commutative or Abelian. Examples that we shall encounter
will demonstrate not only the consistency and independence of the set
of axioms for a group but also the independence of the set of axioms
for a commutative group. If the elements of a group are finite in num-
ber then the group is finite and the number of elements is the order
of the group. If a group is not finite, then it is infinite. Finally, we
mention that analogous to the convention introduced for semigroups,
we shall frequently use "G" as a name of the group (G, , 1) if the opera-
tion involved is unambiguous.

EXAMPLES
3.1. If A is a nonempty set, then the set of all one-to-one mappings on A

onto itself, symbolized G(A), together with function composition and the iden-
tity map iA, is a group. This conclusion simply summarizes basic properties of
one-to-one correspondences. We shall call this group the group of one-to-one
transformations on the set A.

3.2. If n is a positive integer, then congruence modulo n is a congruence rela-
tion on the additive group of integers. Consequently an operation + is defined
in Z., the set of equivalence classes a, by choosing a + b to be a _+b. It is an
easy matter to prove that (Z., +, 0) is a commutative group of order n.

3.3. Congruence modulo n is also a congruence relation on the multiplica-
tive semigroup of integers. This leads to the commutative semigroup (Za, -, 1)
where, by definition, a - b = ab. The identity element for the operation is 1 and
since 0 has no inverse, the semigroup is not a group. Discarding 0 does not
always overcome the difficulty, since the resulting set may not be closed under
multiplication; for example, in Z5, 2 3 = 0. This difficulty is absent if n is a
prime p, since then as - b = 0 implies in turn that ab 0(mod p), p divides a
or b, either a orb is equal to 0. That is, multiplication is an operation in Z; =
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Zn - {0}. With I the identity element, to conclude that the system is a group,
it remains to prove that each element has an inverse or, in other words, that
the equation ax with a P` 0 has a solution in Z. Now 331 = 3 with a P 0
is equivalent to ax = 1(mod p) where p does not divide a. If p does not divide
a, then a and p are relatively prime and there exist integers r and s such that
ra - sp = 1. But then ram I (mod p) or ra = 1, and a has an inverse. Thus,
(Zp, , i) is a commutative group.

3.4. For groups of small order a multiplication table, as described earlier for
Boolean algebras, is a practical device for exhibiting the group operation,
inverses, and so on. As an illustration, consider the set F of six functions fl,
f2, , f6 of a complex variable z, where

fl(Z) = Z, f2(z) = I 1 z' fa(z) = z
z

I'

f4(Z) =
z'

f6 (Z) = I - Z, fe(z) _ Z

z - I'
with the composite of fi and f; taken to be f; o f;. Since f, is an identity element
for the operation and a is associative, (F, f,) is certainly a semigroup. The
following multiplication table shows that actually it is a group and, further,
that the group is noncommutative.

fl f2 fa f4 f6 Is

ft flf2f3f+f6f6
f2 f2 f3 f1 f6 f4 f6

f3 fa fl f2 f6 f6 f4

f4 f4' f5 f6 fl f2 f3

f5 f6 f6 f4 f3 ft f2

f6 f6 f4 f6 f2 f3 f,

There is also the possibility of using this device to concoct groups of sma'l
order. For this we start with a nonempty set S of letters a, b, , k, which ar
to be the group elements, and fill out a multiplication table in such a way that
all the group axioms are fulfilled. The table will exhibit an operation in S ig
each entry is a member of S. A much stronger requirement is given by condition
G4 in Theorem 3.2. The unique solvability of ax = b for all a and b in S means
that in each row of the multiplication table each element of S must appear
exactly once. Similarly, the unique solvability of ya = b implies that each
column in the table is simply S in some order. A table whose rows and columns
fulfill these conditions defines a group if the operation is associative. Unfortua
nately, it is not easy to check the associative law directly from a multiplication
table unless special preparations are made.

3.5. Let C be the set of all rotations about the origin in a Cartesian plane_
An element of G is a mapping of the form (x, y) -+- (x', y'), where

x' = x cos 0 - y sin 0, y' = xsin0+ycos0.



8.4 ` Subgroups 333

Here B is the angle of rotation. Then (G, o, :), where o is a function composition
and i is the identity map, is a group.

EXERCISES
3.1. (a) For the real number a, let ta: R -} R be such that xta = x + a for

each real number x. Show that (T, i), where T = {t.1a E R-}, - is
function composition, and i is the identity map on R, is a group.

(b) For the real number a, let sa: R --- R be such that xsa = xa for each
real number x. Show that (S, a, :), where S = {s,I a E R - (0)),
o is function composition, and i is the identity map on R, is a group.

3.2. For real numbers a and b with a -' 0, let [a, b] be the mapping on R into
itself such that x[a, b] = xa + b. Show that A = {[a, b]ia, b C B. and a ,E 0}
is a group under function composition.

3.3. Show that {(1 + 2m)/(1 + 2n)lm, n E Z} is a group under ordinary
multiplication.

3.4. Show that {cos r + i sin rjr C (9} is a group under ordinary multipli-
cation.

3.5. Write out a multiplication table for Z,'.
3.6. An operation in {e, f} may be defined as follows: ee = fe = e, of = ff = f.

Show that this system satisfies the group axioms G, and G2, but not G3. Con-
struct two other systems to complete the proof of the assertion that the set of
axioms for a group are independent.

3.7. In the text an Abelian group is defined to be a group having the further
property that ab = ba for all a and all b. Prove that an Abelian group can be
characterized as an ordered triple (G, , ') where G is a nonempty set, is a
binary operation in C, ' is a unary operation in G, and the following property
holds:

if (aa')b' _ (rs')t', then b = (tr')s.

4. Subgroups

A group H is a subgroup of a group G if H e G and the restriction
of the operation in G to H X H is equal to the operation in H. In other
words, the subgroups of a group G are the closed subsets that satisfy
the group axioms. Let H be a subgroup of the group G and 1' and 1 be
the identity elements of H and G respectively. Then V- 1' = 1' and
t' 1' = 1', so 1'- 1' = 1.1'. By the cancellation laws it follows that 1' = 1 ;
thus the identity element of a group G is the identity element of any
Subgroup H of G. This result is a consequence of the following necessary
I111c1 sufficient conditions that a subset of a group determine a subgroup.
We have derived it independently in order that it be available for use
fr the proof.
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THEOREM 4.1 . A nonempty subset H of a group G determines a
subgroup of G if

(i) H is closed, and
(ii) the inverse (in G) of each member of H is a member of H.

Proof. Let H be a nonempty subset of G having the two stated prop.
erties. Then there is in H an element a of G and hence aa'' = 1 is in
H by (i) and (ii). Since lx = x for x in G, 1x = x for x in H and for
each a in H there is in H an element a', namely a-', such that aa' = 1.
Thus H satisfies G2. Since H is closed under the operation in G, that
operation restricted to H X H is certainly an associative operation
in H. Hence, H is a group.

Conversely, if H is a nonempty subset of G which determines a
subgroup of G, then (i) must hold. Since 1 C H, as observed above,
the equation ax = I has a solution in H. Since the only solution of
this in all of G is a ', (ii) must hold for H.

COROLLARY. A nonempty subset H of a group G determines a
subgroup of G if for all a and b in H, ab-' is in H.

THEOREM 4.2. A nonempty subset H of a finite group G deter.
mines a subgroup of G if H is closed.

Proof. This follows from the definition of a subgroup and Theo-
rem 3.4.

THEOREM 4.3. The intersection of a nonempty collection of sub,
groups of a group G is a subgroup of G.

The proof is left as an exercise.

Every group G includes two subgroups, namely G and [ 1 } ; these are
the improper subgroups of G. Any other subgroup of G is a proper
subgroup. Proper subgroups can usually be obtained by the following
technique. Let S be a subset of a group G. Then the intersection of all
subgroups of G which include S is a subgroup of G which includes S.
This is called the subgroup of G generated by S and is symbolized
by [S]. The set [S] has the following properties: (i) it is a subgroup
of G, (ii) it includes S and (iii) is included in any subgroup of G that
includes S. It is easily seen that these three properties characterize [S].
This characterization can he' used to obtain an explicit description of
the elements of [S] as the finite products ala2 a (n arbitrary), where
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a; C S or a; is the inverse of an element of S. To prove this assertion,

let H be the set of such products. In view of Theorem 4.1, H is a

subgroup
of G and, clearly, H Q S. If K is a subgroup of G that

includes S, then K contains each member and the inverse of each mem-

ber of S. Hence, K Q_ H. Thus H satisfies the properties which character-

ize (S], whence [S] = H. The subgroup generated by the unit set (a}
will be called the subgroup generated by a and symbolized by [a]. It
consists of all integral powers of a; a° is the unit element and a '° is the

inverse of a'. The group [a] is commutative since ama" = a'+n = a"am.
A group C is called a cyclic group if there exists an element a of C

such that C = [al. For example, the additive group of integers, (Z, +, 0),
and the additive group of integers modulo r, (Zr, +, 0), are cyclic
groups; the first is generated by I and the second by 1. The multiplica-
tive group (ZD, , 1) is also cyclic, but to prove this requires a few facts
from number theory. The cyclic groups Z and ZT, r = 1, 2, , exhaust
the collection of all essentially different cyclic groups in a sense which
we now explain.

An isomorphism of a group G onto a group G' is a one-to-one map-
ping f on G onto G' such that for all x and y in G,

f(xy) = f(x)f(y)
where, on the left, the operation in G is in force while on the right it is
that in G'. Thus, a one-to-one mapping on G onto G' is an isomorphism
if the image of a product is the product of the images. If there exists an iso-
morphism f of G onto G', then G' is called an isomorphic image of G.
In this event it is clear that f ' is an isomorphism of G' onto G so that
if G' is an isomorphic image of G, then G is an isomorphic image of G'.
We say then that G and G' are isomorphic groups. For example, the
mapping

f : R+ -} R where f (x) = logio x

is well known to be one-to-one and onto and, since

log10 Ay = logio x + logio y,

it is an isomorphism of the multiplicative group of positive real numbers
onto the additive group of real numbers. Isomorphism is an equivalence
relation on any collection of groups and, from the standpoint of group
theory, members of an isomorphism-equivalence class are indiscernible.
The sense in which the cyclic groups Z and Z, r = 1, 2, , yield all
cyclic groups can be inferred from the following theorem.
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THEOREM 4.4. An infinite cyclic group is an isomorphic image of
the additive group of integers and a cyclic group of order r is an iso-
morphic image of the additive group of integers modulo r.

Proof. If C = [a] is a cyclic group, then the mapping f: Z -} C such
that f(n) = a" is onto C. If it is not one-to-one, then ar = as for
some distinct pair of integers r and s. We may assume that r > s.
Then ar = 1, so there exists a positive integer p such that ap = 1.
Let n be the smallest positive integer such that all = 1. Then 1 = a0,
a, . , a"-1 are distinct from each other, since ar = as with 0 < s, r < n
implies that ar = I with 0 < r - s < n, which contradicts the
choice of n. Moreover, all distinct powers of a appear among a0,
a, , a"-'. For since any integer m can be written in the form

m = nq + r, 0<r<n,
we may conclude that

am = an4+r = (an)9ar = ar.

Thus, if f is not one-to-one, then C has finite order. It follows that K
C has infinite order, then f is one-to-one and onto C. Finally, since

f(m + n) = am+n = f(m)f(n),

we have shown that an infinite cyclic group is an isomorphic image
of Z.

Next assume that C = [a] has order r. According to the preceding
part of the proof, r is the least positive integer such that ar = 1 and
C = 11, a, , ar-' 1. It is left as an exercise for the reader to com=
plete the proof by proving that C is an isomorphic image of Zr.

The notion of a cyclic group provides one means of classifying the
elements of any group G. If a C G, then a is of infinite order or finite
order r, according as [a] is infinite or is finite of order r. In the first
case, a" 1 if n is any nonzero integer; in the second case, ar = I and
r is the least positive integer such that ar = 1.

By virtue of the simplicity of cyclic groups it is possible to determine
all subgroups of a cyclic group in a straightforward way. We discuss
this next. Let C = [a) and let H be a subgroup different from 111.
Then H contains a power am of a, where m 0 0. Since, if am C H, then
a m C H, it follows that there exists a positive integer m such that
am C H. Let s be the smallest positive integer such that as C H. We
shall show that H = [as] and that the mapping g on the set of all sub-
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groups H 0 [ 11 into _Z+ such that g(H) = s is one-to-one. To prove
the first assertion let am be any element of H and write m in the form

m=sq+u, 0<u<s.
Then a" = am(al)_Q C H, and hence, by the minimality of s, u = 0.
Thus am = (a')°. Since; on the other hand, any power of all is in H,
H = [as]. That g is one-to-one is clear, because if g(H) = s = g(H'),
then H = [as] = H'.

To complete the investigation of the subgroups of C = [a), we con-
sider separately the cases where C has infinite order and has finite
order. If C is infinite, then the mapping g is onto Z+, because if s C Z+,
then g [a' ] = s, since the smallest positive power of a in [a-') is s itself.
If C has finite order r, then g is onto the set of positive divisors of r
which are less than Y. To prove this we observe that 1 = a' E H and
then repeat an argument used above to conclude that r is a multiple
of s; that is, s divides r. On the other hand, let s be any positive divisor
of r which is less than r. If r = st, then (a')' = 1 and (a')" 0 1 if
o < t' < t. Hence t is the order of [as]. If g[a'] = s', then [as"] = [a'],
and hence [as"] has order t. It follows in turn that as" = 1, s't > r = st,
and s' > s. Since s' < s by the definition of s, we have s' = s.

If C is infinite, the one-to-one correspondence g can be extended to
one between the set of all subgroups and the set of natural numbers by
choosing 0 as the image of [ 1) . If C has finite order r, then g has a cor-
responding extension whose range is the set of all positive divisors of r
upon choosing r as the image of [ 11. In the finite case, if H corresponds
to s, so that H = [as], then the order of H is r/s. Hence another one-
to-one correspondence between the subgroups of C and the positive
divisors of r results if with each subgroup we associate the order of that
subgroup. We summarize our results in the next theorem.

THEOREM 4.5. A subgroup H of a cyclic group C is cyclic. If
C = [a] and H 7-1 111, then H = [as], where s is the least positive
integer such that a' C H. If C is infinite, then the subgroups [as] of C
are in one-to-one correspondence with the set of natural numbers.
If C is finite of order r, its subgroups are in one-to-one correspondence
with the positive divisors of r. Alternatively, in the finite case the
order of a subgroup is a divisor of r.and corresponding to each divisor
t of r there is exactly one subgroup of order t; it is generated by a'".

A subgroup of the group of one-to-one transformations on a set A
is called a transformation group on A. Since the theory of groups had
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its origin in the study of certain groups of this type, a representation
problem arises : Is every group isomorphic to a transformation group?
This question has an affirmative answer, which was first supplied by
Cayley. We state it as our next theorem.

THEOREM 4.6 . For every group G there is an isomorphic trans-
formation group.

Proof. As the set on which the transformations shall be defined, we
take the set G itself. Consider the mapping ta: G -'- G defined by the
group element a as

ta(x) = ax for all x in G.

Since the equation ax = b has a solution in G for given a and b in G,
this map is onto G. Since the cancellation laws hold, to is one-to-one.
Thus, to is a member of the group of one-to-one transformations on
the set G. We show now that { tala E G } is a transformation group L
on G. Since

Q. ° tb)(x) = ta(tb(x)) = ta(bx) = a(bx) = tab(x),

to o tb = tab and L is closed. Further, t.-' C L, since it is easily shown
that to 1 = to Hence L is a group by Theorem 4.1.

Next we prove that L is an isomorphic image of G under the cor-
respondence a -'- .. By definition of L, this map is onto L. It is one-
to-one since, if a and b are distinct elements of G, then al 0 bl,
and hence to 0 tb The validity of the relation to G tb = tab completes
the proof.

EXERCISES
4.1. Prove the Corollary to Theorem 4.1.
4.2. Find two proper subgroups of each of the groups defined in Exercise 3.1.
4.3. Prove Theorem 4.3.
4.4. Complete the proof of Theorem 4.4.
4.5. Let G be the subset of the set A in Exercise 3.2, consisting of those map-

pings with a= f 1 and b C Z.

(a) Show that G determines a subgroup of A.
(b) Is G Abelian? Is G cyclic?
(c) Determine the orders of [1, 1) and [-1, -1 ].
(d) Specify all values of a and b fqr which [a, b] is a member of H, the sub-

group of G that is generated by [1, 2] and [-1, 0].
(e) Specify two members of G which, taken together, generate G.



8.5 1 Coset Decompositions and Congruence Relations 339

4.6. Show that a group of even order has an odd number of elements of
order 2.

4.7. Show that if a, b and ab are group elements each of order 2, then ab = ba.
4.8. Prove that if a and b are elements of a group, then ab and ba have the

same order.
4.9. Let a and b be elements of a group such that ba = ambn for integers m

and n. Show that the elements ambn-Q, am_sb", and ab-' have the same order.
4.10. Let a and b be elements of a group such that b-'ab = ak for some in-

teger k. Show that b-'a'br = a°k'.
4.11. Show that in an Abelian group the product of an element a of order n

and an element b of order m is an element of order mn, provided that m and n
are relatively prime.

5. Coset Decompositions and Congruence Relations
for Groups

Let G be a group and H a subgroup. A subset of G of the form
{gh1h C H), where g is a fixed element of G, is abbreviated to gH and
called a left coset of H in G. Left cosets, along with their "right" an-
alogue, are distinguished types of subsets of a group, as we shall show.
Their basic properties include the following.

(I) For any subgroup H of 0, each element of G is a member of a
left coset of H. Two left cosets of H are either disjoint or equal.

(II) All left cosets of H have the same cardinal number as the set H.

To prove (I) we observe first that, since the unit element I of G
is in H, an element g of G is a member of the left coset gH. Next, sup-
pose that two cosets aH and bH have a common element c. Then
c = ah, = bh2, and hence a = bhs, where h8 C H. Hence ah C bH for all
h in H, which means that aH a bH. Reversing the roles of a and b
gives bH S aH and hence aH = bH. Property (II) is established by
the mapping h --i- gh on H into gH.

From (I) it follows that there exists a family {g;Hhi C I) of left cosets
of H that is a partition of the set G. This is the left coset decomposition
of G modulo H. Clearly the set G is the union over a left coset decompo-
sition of G. The cardinal number of the left coset decomposition of G
modulo H is the index of H in G, symbolized (G: H). In view of (II)
we have the following relation among the cardinal numbers
and (G: H) :

0 = (G: H) I.
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Now the cardinal number of any group G may be written as an index,
indeed (G: { 1 D. This is usually shortened to (G: 1); With this notation
the above relation may be written as

(G: 1) = (G: H) (H: 1).

It is left as an exercise to prove the following generalization : If G is a
group, H is a subgroup of G, and K is a subgroup of H, then K is a sub-
group of G and

(G: K) = (G: H) (H: K).

If G is a finite group of order n and H a subgroup of order m, we have
n = (G: H)m, which implies that m divides n. This is a famous result
due to Lagrange. We state it along with two immediate consequences
as our next theorem.

THEOREM 5.1. The order of a subgroup of a finite group divides
the order of the group.

COROLLARY 1. The order of an element of a finite group divides
the order of the group.

COROLLARY 2. A group whose order is a prime is cyclic.

If G is a group and H a subgroup, then a subset of G of the form
{hgIh E H} where g is a fixed element of G is abbreviated to Hg and
called a right coset of H. Properties (I) and (II) above hold for right
cosets. The family {Hg;l j C J} of right cosets of H that is a partition
of G is the right coset decomposition of G modulo H. It is left as an
exercise to show that the set of inverses of the members of a left coset
of H is a right coset of H and that, consequently, the left and right coset
decompositions of G modulo H are similar sets. Therefore the index
(G: H) can also be determined from the right coset decomposition.

For later applications we introduce some notation which extends that
used for cosets. Let A and B be subsets of a group G. By AB we shall
mean labia C A and b C B. If one of these subsets, for instance A,
is simply { a }, then we shall write aB instead of { a } B. The extension of
this notation to more than two subsets is clear. In additive notation we
shall write A + B in place of AB. In particular, a left coset modulo a
subgroup H will be written as a + H and a right coset as H + a.
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EXAMPLES
5.1. Referring to the group Fwhose multiplication table is given in Example

3.4, H is a subgroup. The left coset decomposition of F modulo H is

{H, f2H, faH) _ { {fl, f4}, {fs, f6}, if., f6) )

and the right coset decomposition modulo H is

{H, Hfz, Hfa) = { {h, f4}, {f2, ffi}, {f3, f6} } .
It should be observed that these are different partitions of F. In a commutative
group, the left cosets and right cosets of a subgroup are identical, of course. For
example, in (Z,2, +, 0) the left and right coset decomposition modulo the sub-
group H= {0,4,$} is {H,1 +H,2+H,3+H}.

5.2. In the multiplicative group C* of nonzero complex numbers rei6
(r > 0, 0 real), the subset R+ of all positive real numbers is a subgroup. The
coset decomposition of C* modulo R+ can be described geometrically as the
collection of rays, with initial point deleted, issuing from the origin in the com-
plex plane. If instead of R+ we start with the subgroup U of all complex num-
bers such that r = 1, then the coset decomposition of c* modulo U can be
described geometrically as the collection of all circles with positive radii and
centered at the origin in the complex plane.

Given a group G and a subgroup H, let 0 be the equivalence relation
on G corresponding to the left coset decomposition of G modulo H.
Thus, by definition, a B b if a and b are in the same left coset of H or,
what is easily proved to be the same, if a 'b E H. The relation 0 has
the further property that a Ob implies that ca 0 cb for all c in G. That is,
0 satisfies one of the two requirements [see (C1) in Section 11 for a
congruence relation on G. We shall call 9 a left congruence relation
on this account. How left congruence relations on G and subgroups of
G are related is described next.

LEMMA 5.1 . Let G be a group and B be a left congruence relation
on G. Then H=Ix E G(x 0 l} is a subgroup of G and a 0 b iff a 'b C H
(or, alternatively, if a and b are members of the same left coset of H).
Conversely, if H is a subgroup of G, then the relation B such that
a 0 b if a -'b C H is a left congruence relation on G. The correspond-
ence of subgroups to left congruence relations is a one-to-one cor-
respondence between the set of left congruence relations on G and
the set of subgroups of G.

Proof. Let 0 be a left congruence relation on G and consider H =
{x E Gjx 6 11. Since 1 E H, this set is nonempty. Assume that a,
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b E H. Then b 0 1 and hence ab 0 a. Since a 0 1 and 0 is transitive,
it follows that ab 0 1, whence H is closed. If a C H, so that a 8 1,
then a-'a 8 a-', whence a' 0 1 or a' C H. Therefore H is a subgroup.
Next, if a 0 b, then, in turn, a -'a 0 alb, a 'b 0 1, a -'b C H. Each of
these steps is reversible, so that a 0 b if a-'b C H.

Turning to the converse, the fact that a 'b E H if a and b are in
the same left cosct of H, coupled with the fact that the left coset
decomposition of G modulo H is a partition of G, implies that the
relation 0 defined in the lemma is an equivalence relation on G.
That, in addition, a 0 b implies ca 0 cb, is a consequence of the identity
a 'b = (ca)-'(cb).

The proof of the last assertion of the lemma is left as an exercise.

The preceding lemma has an analogue for right congruence rela-
tions (that is, equivalence relations 0 such that if a 0 b then ac 0 bc) for
a group G. They determine and are determined by right coset decom-
positions of G modulo subgroups H of G. Now let 8 be a congruence
relation on G (that is, simultaneously a left and right congruence rela-
tion). As a left congruence relation, 0 determines a subgroup H of C
such that the equivalence class determined by an element g in G is gH.
As a right congruence relation, 8 determines the same subgroup H
(note that II is defined independently of left congruency) and the equiv-
alence class determined by g is Hg. Hence, for all g in G, Jig = gH or,
what is equivalent, g'Hg = H. A subgroup II of C such that g -111g = H
for all g in G is a normal or invariant subgroup of G. Thus a congru-
ence relation 8 on a group G determines a normal subgroup H of C.
Indeed, from Lemma 5.1 it is immediate that the congruence relations
on G are in one-to-one correspondence with the normal subgroups of C.
If to the congruence relation 0 on G corresponds the normal subgroup H
of G, it is customary to denote the quotient set G/8 by G/H. We shall
do this. Further, we shall often write the element gH of G/II as ff. We
already know (see Section 1) that an operation is defined by G/II by
the rule

and proceed to show that (G/H, -, 1) is a group, the quotient or factor
group G modulo H. The associativity of the operation in C/II is
inherited from that of the operation in G, the element 1 is clearly an
identity clement, and, finally, a-'-' is a solution of the equation TO = I.
The operation in G/H admits of an alternative description. Goscts of H
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are subsets of G, and hence can be composed using the operation in G
as described prior to Example 5.1. With H normal the product (aH) (bH)
is equal to abH, as the reader can prove. But the element abH of G/H
is the product of the elements aH and bH of G/H. Thus, the operation
in G/H may be interpreted as one for (restricted) subsets of G.

EXAMPLES
5.3. Suppose that C is an additive commutative group. Then our foregoing

results take the following form. If 0 is a congruence relation on G, then

H = {a C Gja0O}

is a'subgroup of G and aOb if -a + b (or, equivalently, a - b) is in H. Con-
versely, if His a subgroup of G, then the relation 0 such that aOb if a - b C H
is a congruence relation on C. In the quotient group G/H (or what is often
called the difference group, G - H, in this case) the operation reads

(a+H)+(b+H) = (a+b)+H.
5.4. To assist the reader in acquiring familiarity with the additive notation

introduced in the preceding example, we reestablish the fact that 0)
(see Example 3.2) is a group. The normal subgroup corresponding to congru-
ence modulo n in the additive group of integers is the cyclic group [n]. Its
cosets are

[n],1+[n],...,(n-1)+[n]

and these are the elements of (Z/[n], +, [n]).
5.5. It is left as an exercise to show that the intersection of a collection of

normal subgroups of a group is a normal subgroup. For a group G we may
then define the normal subgroup generated by a subset S as the intersection of
all the normal subgroups that include S. It is left as another exercise to prove
that the normal subgroup generated by S is the subgroup generated by the
subset T of G consisting of all elements of the form g 'sg for some g in G and
some s in S.

To describe the relationship of a quotient group G/H to G, a defi-
nition is needed. A homomorphism of a group G onto a group G' is
a mapping f on G onto G' such that for all x and y in G, f(xy) = f (x)f (y).
That is, a homomorphism onto differs from an isomorphism onto only
in that a homomorphism need not be one-to-one. If there exists a homo-
m )rphism of G onto G', then G' is called a homomorphic image of G.

By virtue of the definition of the operation in a quotient group it is
clear that if G is a group and G/H a quotient group, then G/H is a
homomorphic image of G under the natural mapping on G onto G/H-
that is, the mapping p on G onto G/H such that p(x) = xH. We con-
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sider next the converse situation. Let G' be a given homomorphic image
of G and f the accompanying homomorphism. Then the equivalence
relation 0 on G associated with f, namely, a 0 b iff f(a) = f(b), is a con-
gruence relation on G. The corresponding normal subgroup K of G,
namely, {a C Gjf (a) = 11, is called the kernel of the homomorphism f.
The quotient group G/K is isomorphic to G'. Indeed, the relation g,
which we define as

{(x, f(x))Ix C G/K},

is a function on G/K onto G' such that

g(xy) = g( ) = f(xY) = f(x)f(Y) = g(x)g(y)
That is, g is an isomorphism. Further, if p is the natural mapping on G
onto G/K, then f = g c p. That is, any homomorphic image of a group
G can be duplicated to within an isomorphism by some quotient group
of G. We state our results in our next theorem.

THEOREM 5.2. If G is a group and K a normal subgroup, then
the quotient group G/K is a homomorphic image under the natural
mapping on G onto G/K. Conversely, if the group G' is a homomorphic
image of G, then those elements which are mapped onto I determine
a normal subgroup K of G and G/K is isomorphic to G'. If f : G - G'
is the given homomorphism, then f = g o p where p is the natural
mapping on G onto G/K and g is an isomorphism of G/K onto G'.

EXAMPLES
5.6. We illustrate the above theorem by using it to derive again Theorem 4.4

concerning the structure of cyclic groups. Let G be a multiplicative cyclic group
generated by a. The mapping m a°' is a homomorphism of the additive group
of integers onto G. Hence C is isomorphic to Z/K, where K is the kernel of the
homomorphism and, in particular, a subgroup of Z. Now it is easily proved that
the only subgroups of Z are the cyclic groups [n]. If K = [0], then m -} a'" is
an isomorphism and G is isomorphic to Z. Otherwise G is isomorphic to Z/[n],
a cyclic group of order n. It follows immediately that two cyclic groups are iso-
morphic if they have the same order. For this reason it is common to speak of
"the" cyclic group of infinite order and "the" cyclic group of order n.

5.7. Every subgroup of a commutative group is normal and consequently
determines a quotient group. Thus, the subgroup R+ of all positive real num-
bers of the multiplicative group C* pf nonzero complex numbers determines a
quotient group; C*/R+ is isomorphic to the additive groups of real numbers.
Again, the quotient group of C* modulo U, the subgroup of complex numbers
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of absolute value 1, is isomorphic to the multiplicative group R* of nonzero
real numbers.

5.8. We note that with the above theorem a homomorphism can be shown
to be an isomorphism by proving that its kernel is {1}.

5.9. If f : G -+- G' is a homomorphism of the group G onto the group G', then
f(l) = 1', the identity element of C' and f(a ') = (f(a))-'.

5.10. Suppose that G is a group, G' is a set in which a binary operation is
defined, and f is a mapping on G onto G' such that f(ab) = f(a)f(b). Then G'
is a group.

EXERCISES
5.1. Verify the relation (G: K) = (G: H)(H: K), given in the text.
5.2. Establish the two Corollaries to Theorem 5.1.
5.3. Prove the assertion made in the text that if G is a group and H is a sub-

group, then there exists a one-to-one correspondence between the left coset
decomposition of G modulo H and the right coset decomposition of G modulo H.

5.4. Let G be a group and H and K be subgroups of finite orders. Show that
if these orders are relatively prime, then H (1 K = {1} .

5.5. Let G be a group having H and K as subgroups. Show that any left coset
of H (1 K is the intersection of a left coset of H and one of K. Use this to deduce
that if H and K have finite index in G then so has H (l K.

5.6. Let H and K be two finite subgroups of a group G. Show that the subset
HK of G contains precisely (H: 1)(K: 1)/(H (1 K: 1) distinct elements.

5.7. Let G be a group having H and K as subgroups. Show that HK is a sub-
group iff HK = KH.

.5.8. Supply the missing part of the proof of Lemma 5.1.
5.9. Let G be a group and H a subgroup. Under what circumstances is

xH - - Hx a mapping on the left cosets of H onto the right cosets of H?
5.10. Show that if for a subgroup H of a group G, g -'Hg C H, for all g in C,

then H is normal in C.
5.11. Show that if H is a subgroup of a group G, then g'Hg, for g C G, is a

subgroup isomorphic to H. Let N = n {g'Hg!g C G} and show that N is a
normal subgroup of C, indeed the largest normal subgroup of G included in H.

5.12. Prove that if H is a normal subgroup of a group G, then
(aH) (bH) = abH.

5.13. Establish the assertions made in Example 5.5.
5.14. Let if be a collection of distinct subsets Si of a given group G with the

following properties.

(a) Every element of G is in at least one Si.
(b) No Si is a proper subset of an S,.
(c) The product of any two members of if is included in a member of if.

Show that if is the coset decomposition of a normal subgroup of G.
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5.15. Let C* be the set of nonzero complex numbers z = re2:ir, U be the set
of complex numbers of absolute value 1, and R, C, and R* have their usual
meanings. Investigate each of the following mappings-deciding which are
homomorphisms, which are isomorphisms, and so on.

(a) f : (R+, , 1) - - (R, +, 0)
(b) f: (C*, , 1) -} (U, , 1)
(c) f : (R, +, 0) -*- (U, , 1)
(d) f: (C*, , 1) ->- (R+, , 1)

where f (x) = In x,
wheref(z) = eYrip,
where f (,p) = esrip,
wheref(z) _ IzI*'

5.16. If G is a group, elements of the form x .ty =1xy are called commutators.
Prove that the subgroup C generated by the set of all commutators of G is a
normal subgroup, that G/C is Abelian, and, if N is any normal subgroup of C
such that GIN is Abelian, then C C N.

6. Rings, Integral Domains, and Fields

A ring (with identity element) t is an ordered quintuple (R, -}-, , 0, 1),
where R is a set, + and are binary operations in R, 0 and I are dis-
tinct members of R, and the following conditions are satisfied.

Rt. (R, +, 0) is a commutative group (the additive group of the
ring).

R2. (R, , 1) is a semigroup with identity element (the multi-
plicative semigroup of the ring).

Rs. The- following distributive laws hold :

a(b + c) = ab + ac, (b + c)a = ba + ca.

EXAMPLES
6.1. The statement that (Z, +, , 0, 1) is a ring summarizes many of the

basic properties of the system of integers. To be precise, it is a concise formula-
tion of properties (1)-(5), (7), and (8) in Theorem 3.3.1 of this system.

6.2. The system of rational numbers and that of the real numbers provide
further models of the theory of rings.

6.3. The set Z[V'5] of all real numbers of the form m + n1'5, where m,
n C Z, together with the familiar operations and 0 and 1, is a ring.

6.4. (Zr, +, , 0, 1) (see Examples 3.2 and 3.3) is an example of a finite ring,
that is, a ring such that the basic set has a finite number of elements.

t The usual definition of a ring does not require the existence of an identity element.
However, since those rings which interest us have an identity element, we have incorporated
this requirement into our definition at the outset. The assumption that 0 and I are distinct
elements of R serves to rule out the extreme and trivial case of a ring such that R consists
of a single element.
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6.5. If (B, (, ', 0, 1) is a Boolean algebra, then it is possible to introduce
operations in B such that the resulting system is a ring. For addition in B we
choose the symmetric difference operation; that is, if a, b C B, we define

a + b = (a ( b') U (b ( a').

For multiplication in B we take (1 and henceforth use the customary ring
notation ab for a (l b. Then (B, +, , 0, 1) is a ring. The reader is asked to
prove this and derive properties of such a ring in the exercises for this section.

Many of the computation rules of ordinary arithmetic carry over to
arbitrary rings. First of all, the definitions and properties in Section 2
pertaining to powers of an element and those pertaining to multiplica-
tion apply to the additive group and the multiplicative semigroup,
respectively, of any ring. In addition to the earlier rules for multiples
we have the rules
(1) n(ab) = a(nb) = (na)b.

These follow from the general distributive laws

aE;- ibi = E;-iabj, (X:=i b:) a

which, in turn, are easily proved by induction. We call attention to the
fact that the multiple na of a ring element a should not be confused
with a ring product. However, since we are assuming that a ring always
has an identity element, we can write

na = la + la + + 1a(n summands) = (1 + 1 + + 1)a = (nl)a

and the last is a product.
The distributive laws hold for subtraction in a ring:

(2) a(b - c) = ab - ac, (b - c)a = ba - ca.

To prove, for example, the first of these, we must show that a(b - c) +
ac = ab. But this follows directly from the first distributive law in Ra,
since (b - c) + c = b.

For b = c identities (2) yield the following important properties of
the ring element 0:
(3) aO = Oa = 0,

for all a in R. In particular, Oa is equal to the ring element 0 whether
"0" in Oa is the ring element or the natural number zero.

If in (2) we set b = 0, we get

a(-c) = -ac, (-c)a = -ca,
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and if in the first of these identities we replace a by -a we obtain
(-a)(-c) _ -(-a)c = (- -a)c, whence

(-a)(-c) = ac.
An element a of a ring Rt is called a left (or right) zero-divisor

if there exists in R an element b 0 0 such that ab = 0 (or ba = 0).
By (3) the element 0 is both a left and right zero-divisor, since by as-
sumption our rings contain more than one element. A proper zero-
divisor is a zero-divisor which is different from 0. A ring has a proper
zero-divisor if it contains a pair a, b of nonzero elements such that
ab = 0. We shall say that a ring is without zero-divisors if it has no
proper zero-divisors.

Since an element of the ring R is an element of the semigroup (R, , 1),
the definition of an inverse of a ring element is at hand. A ring element
is called a unit if it has an inverse. According to Section 2, if a has an
inverse, it is unique; the inverse of a will be denoted by a-'. Again ac-
cording to Section 2, if a and b are units then also a-' and ab are units,
which implies that the set of units of a ring form a group. The element 0
is not a member of the group of units of a ring since for every element a
in R,aO=Oa=0F& 1.

Various specialized types of rings are obtained by imposing condi-
tions on the multiplicative semigroup at hand. For example, a ring is
said to be commutative if its multiplicative semigroup is commutative.
A commutative ring R (with identity element) having no proper zero-
divisors is called an integral domain. The latter condition means
simply that the set R* of nonzero elements of R is closed under multi-
plication. A ring R is called a division ring (or skew field) if R* is
closed under multiplication and (R*, , 1) (where now the domain of
is restricted to R* X R*) is a group. Finally, a division ring is called a
field if multiplication is a commutative operation. Referred back to the
definition of a ring, the field (R, +, -, 0, 1) is a ring such that the set
R* = R - {0} is closed under multiplication and (R*, , 1) is a com-
mutative group.

EXAMPLES
6.6. For any ring R we now define the ring Rc2) of 2 X 2 matrices with ele-

ments in R. The elements of R(2) are all arrays or matrices

(a) _ (au al)
ali a22/

f Henceforth we shall often call the ring (R, , -h, 0, 1) simply "the ring R."
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of two rows and columns with elements a;; in the ring R. The element a;;
located at the intersection of the ith row and jth column of (a) will be called
the i,j-element of (a). Two matrices (a) and (b) are defined to be equal if
aq = b11 for all i and j. Addition of matrices is defined by the formula

au aiz1/ /(bit b1z _ all + bu a1 + b12
azj ass/ \b21 bzz) azl + bat 1722 + b22

It is easily proved that (R(2), +, 0), where 0 is the matrix all of whose elements
are 0, is a commutative group. The negative of (a) is the matrix having -a;;
as its Q -element. Multiplication of matrices is defined by the formula

(au a12\ (b11 b12\ = anbll + alzbzl anb12 + alzbzz
\a21 azz/ \b21 bzz/ as,bnl + azzb21 azlblz + azzbn>.

That is, the i, j-element of the product is the sum of the products of the elements
of the ith row of (a) and the corresponding elements of the jth column of (b).
The matrix

(1 0)
`0 1

is an identity element for this operation and (R(2), , 1) is a semigroup (see
Exercise 2.4). Further, the distributive laws R3 hold, so Rc2 is a ring. This ring
is not commutative, since

1(0 00)(0
0)=(0 0) and (0 0) (0 0O)=(O

0

0)'
The second equation exhibits two proper zero-divisors in R(z).

6.7. A characterization of integral domains among commutative rings can
be given in terms of the (restricted) cancellation law for multiplication:

ac = be and c 0 0 imply that a = b.

Indeed, if for elements a, b, and c in any ring without zero-divisors, ac = be
and c # 0, then (a - b)c = 0 where c 0 0. It follows that a - b = 0, whence
a = b. Conversely, if the above cancellation law holds in a ring, then ab = 0
and b 0 0 imply that ab = Ob and b 0 0, whence a = 0. In summary, a com-
mutative ring is an integral domain if the cancellation law for multiplication
holds.

The system of integers is an integral domain. This statement summarizes
parts (1)-(9) of Theorem 3.3.1.

6.8. A ring R such that every element is idempotent (a'- = a) is commutative
and each element is equal to its negative. To prove this we notice that for all
elements a and b of such a ring

a+b = (a+b)z=az+ab-l--ba+bz=a+ab+ba+b,
whence

(4) ab + ba = 0.



350 Several Algebraic Theories I CHAP P. 8

Setting b = a in this identity yields the identity a$ + a$ = 0. Since as = a, it
follows that a + a = 0 or, in other words, each element is its own negative. In
particular, the negative of ab is ab and this fact, together with (4), implies that
ab = ba, thereby completing the proof.

6.9. The ring Z. of integers modulo n is a field if the modulus is a prime (see
Example 3.3).

6.10. According to Theorem 3.4.1 the system of rational numbers is a field.
This is a restatement of parts (1)-(10) of that theorem. According to Theorem
3.6.1, the system of real numbers is a field.

EXERCISES
6.1. Show that in the definition of a ring R (with identity element 1) the

requirement that 0 0 1 may be replaced by the requirement that R contain
an element different from 0.

6.2. Prove that the set Z[V'5J of all real numbers of the form a + b/
where a, b E Z, together with addition, multiplication, 0, and 1, is a ring.

6.3. Which of the following sets, together with addition, multiplication, 0,
and 1, is a ring?

(a) The set of all real numbers of the form a + b E Z.
(b) The set of all real numbers of the form a + b/ +cY where a, b,

cCZ.
(c) The set of all rational numbers which can be expressed in the form m/n,

where m is an integer and n is a positive odd integer.

6.4. Suppose that (R, +, , 0, 1) is a ring and that in R we introduce new
operations 0 and 0 by way of the following definitions.

aO+ b=a+b - 1,aOb=a+b-ab.
Show that (R, O, 0, 1, 0) is a ring. Describe the ring which results from this
ring if new operations are introduced in R by repeating the same definitions.

6.5. Referring to Example 6.5, prove that (B, +, , 0, 1) is a ring, all of
whose elements are idempotent.

6.6. By a Boolean ring is meant a ring (with identity), all of whose elements
are idempotent. According to Exercise 6.5, a Boolean algebra determines a
Boolean ring. Using the results in Example 6.8, show that, conversely, a Boolean
ring determines a Boolean algebra upon defining

a U b = a + b + ab, anb = ab.
Further, show that the processes of deriving a Boolean algebra from a Boolean
ring and of deriving a Boolean ring from a Boolean algebra are inverses of each
other. Thereby a one-to-one correspondence between Boolean algebras and
Boolean rings is established, a result which was first proved by Stone (1936).

6.7. Prove that a finite integral domain is a division ring.
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6.8. Referring to Example 6.6, prove that if R is a commutative ring and
(a)(b) = 1 for (a), (b) C Rte>, then (b)(a) = 1.

6.9. We assume it known that the set Q of complex numbers forms a field.
Show that the set of all matrices of Q(2) having the form

( ab al

where X is the complex conjugate of x, forms a division ring which is not a field.
6.10. If a is a ring element, then an element b of that ring, such that ab = 1,

is called a right inverse of a. Prove that the following conditions on a are equiv-
alent.

(a) a has more than one right inverse.
(b) a is not a unit.
(c) a is a left zero-divisor.
6.11. Prove that if a ring element has more than one right inverse, then it

has infinitely many. (Hint: Consider the set of ring elements b + (I - ba)a",
where ab = I and n = 0, 1, 2, ..)

6.12. Prove that a ring R is an integral domain if for all a, b, and c in R
and b -' 0, ba = cb implies that a = c.

7. Subrings and Difference Rings

A ring S is a subring of a ring R if S C R and the restriction of addi-
tion and multiplication in R to S X S are equal, respectively, to addi-
tion and multiplication in S. Having chosen to restrict our attention to
rings with an identity element, we shall insist further that a subring S
of a ring R contain an identity element. It follows that if a subset S
of a ring R is a subring, then (sec the Corollary to Theorem 4.1) it
must satisfy the following conditions.

(i) If a, b C S, then a - b C S.
(ii) If a, b C S, then ab C S.
(iii) There exists an element 1, in S such that 1,x = A. = x for all x

in S.

Conversely, it is clear that these conditions are sufficient to insure that
a subset S of a ring R form a subring.

It is possible for the identity element 1, of a subring S to be different
from the identity element 1 of R (see Example 7.4 below). In that event
1, is a zero-divisor of R. For by assumption there exists in R an element a
such that 1,a = b 96 a. Since

1,b = 1,(1,a) = 1,a = b,
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it follows that l,a = 1,b, and hence l,(a - b) = 0. Thus, 1, is a (proper)
zero-divisor of R since a 54- b. As a corollary there is the fact that if R
is an integral domain, then the identity element of a subring is neces-
sarily the identity element of R.

A field S is a subfield of a field F if S C F and the restriction of addi-
tion and multiplication in F to S X S are equal, respectively, to addition
and multiplication in S. Since a field is an integral domain, the identity
element of S is the identity element of S. This also follows from the fact
that the multiplicative group of S must be a subgroup of the multiplica-
tive group of F. This condition, together with the condition that S be
a subgroup of the additive group of F, characterizes the notion of a sub-
field. Hence, S is a subfield of F if the following conditions hold.

(i) a, b C S imply that a- b C S.
(ii) a, b C S and b s' 0 imply that ab-I E S.

EXAMPLES
7.1. The set of all matrices in R(2 (see Example 6.6) of the form

C 0\

determines a subring of RO).
7.2. The field of rational numbers is a subfield of the field of real numbers.
7.3. The intersection of any nonempty collection of subfields of a field F is a

subfield of F.
7.4. Let A and B be rings with identity elements IA and IB, respectively, and

let R be the set of all ordered pairs (a, b) where a C A and b C B. We define
operations in R as

(a, b) + (a', b') _ (a + a', b + b'),
(a, b)(a', b') _ (aa', bb').

It is an easy calculation to prove that R is a ring having (1A, IB) as identity
clement. Further it is clear that RA = {(a, 0)Ia C A} is a subring of R having
(1A, 0) as identity element. Thus the identity element of RA is distinct from
that of R.

The definition of a congruence relation for an algebra (Section 1)
takes the following form in the case of a ring. A congruence relation 0
on a ring R is an equivalence relation on R such that for all a, b, and c
in R,

a 0 b implies that c + a,O c + b,
(Cm1) a 0 b implies that ca 0 cb,
(Cmr) a 0 b implies that ac 0 bc.
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The right-hand analogue of (C,) is superfluous since addition is corn-
mutative. The condition that multiplication preserve equivalent ele-
ments has been written in two parts for easy reference. Now (Ca) means
that 0 is a congruence relation on the group (R, +, 0). Hence, (i) 0 deter-
mines (and, is determined by) the subgroup S = { s C Ris 0 0 } of R (see
Example 5.3), (ii) a 0 b if a - b C S, and (iii) 0-equivalence classes are
left (= right) cosets a + S of S in R. Addition can be defined in R/S in
terms of representatives [that is, (a + S) + (b + S) = (a + b) + S] and
(Cmt) and (Cmr) are additional necessary and sufficient conditions that
multiplication can be defined similarly. Let us translate these into condi-
tions for S. From (Cmi) we infer that if r E R and s C S, then rs C S,
since s C S means s 0 0, and hence rs 0 rO or rs 0 0. Conversely, if a
subgroup S' of R has the property that r C R and s' C S' imply that
rs' C S', then the additive congruence relation 0' which S' determines
satisfies (Cmi), since if a 0'b then, in turn, a - b C S', c(a - b) C S',
ca - cb C S', ca 0 'cb. Similarly, (Cmr) holds for a relation 0 which sat-
isfies (CB) if the subgroup S corresponding to 0 has the property that
r C R and s C S imply that sr C S. There follows the existence of a
one-to-one correspondence between the congruence relations on R and
the subgroups S of the additive group of R such that r E R and s C S
imply that rs, sr C R.

A subset S of a ring R such that S is a subgroup of the additive group
of R and, for all r in R and s in S, both rs and sr are in S, is called an
ideal of R. Thus, a nonempty subset S of R is an ideal if

(i) sCSandICSimplythats - ICS,
(ii) s C S and r C R imply that rs, sr C S.

The results obtained above may now be summarized by the statement
that the congruence relations on R are in one-to-one correspondence
with the ideals of S. As one might suspect, ideals are the analogue for
rings of normal subgroups for groups. Every ring R has at least two
ideals, namely, the entire ring and {0}. The ideal R of R corresponds
to the universal relation on R and the ideal 101 corresponds to the
equality relation on R.

EXAMPLES
7.5. If R is a commutative ring (with identity element) and a C R, then

Ra = {ralr C R} is an ideal called the principal ideal generated by a. Since
R = Rl and {0} = R0, both R and {0} are principal ideals.

7.6. A field F has only two ideals, F and {0}, for if I is an ideal of F and
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I s {0}, then I contains a nonzero element a and hence I contains a -'a = 1,
whence I = F.

7.7. If a commutative ring R has only two ideals, then it is a field. For let a
be a nonzero element of R and consider Ra. This principal ideal contains
la = a and hence is different from {0}; hence, it is equal to R. But this implies
that the equation xa = 1 has a solution for every a 0 0.

7.8. We recall that in Section 6.4 we defined the notion of an ideal of a
Boolean algebra. It is left as an exercise to prove that the ideals of a Boolean
algebra B coincide with the ideals of the corresponding Boolean ring B (see
Exercise 6.6).

Now we can get to the whole point of this discussion. Let R be a ring
and S be an ideal of R which is distinct from R. Then we know that
operations can be introduced in R/S, the collection of cosets a + S of S
in R (that is, the 0-equivalence classes where 0 is the congruence rela-
tion corresponding to S) by the following definitions:

(a+S)+(b+S) =(a+b)+S,
(a + S) (b + S) = ab + S.

Further, we know that (R/S, +, S) is a commutative group. Also, since
S 0 R by assumption, 1+ S 0 S and 1+ S is an identity element for
multiplication. Finally, it is a straightforward exercise to prove that
(R/S, +, , S, 1 + S) is a ring, the so-called difference (quotient,
residue class) ring of R modulo the ideal S.

EXAMPLES
7.9. It is an easy matter to determine all ideals of the ring Z of integers.

Since an ideal of Z is a subgroup of (Z, +, 0) it has the form [r], that is, the set
of all multiples of r (see Section 4). But it is clear that each such subset is an
ideal, indeed, the principal ideal Zr. (That is, Zr in ring notation is [r] in group
notation.) Since Zr = Z(-r), it follows that Zr for r = 0, 1, 2, exhaust the
ideals of Z. The difference ring Z/Zr is Z if r = 0. Since Z1 = Z we exclude the
value I for r. If r > 2, Z/Zr has r elements

0=Zr,I =1+Zr, ,1=r-1+Zr.
This is the ring we denoted by Z. earlier.

If r is a composite number, say r = mn with m > 1 and n > 1, then m # 0
and n s 0, but MR = i = 0. This shows that Z/Zr is not an integral domain if
r is composite. On the other hand, if r is a prime then we know (see Example
3.3) that Z/Zr is a field.

7.10. Some properties of rings carry over to each of their difference rings.
For example, if R is a commutative ring then R/S is commutative. But if R is an
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integral domain, then the same need not be true of a difference ring, as the
preceding example shows.

A homomorphism of a ring R onto a ring R' is a mapping f on R
onto R' such that for all x and y in R,

f(x + y) = f(x) +f(y'), f(xy) = f(x)AY)
If there exists a homomorphism of R onto R', then R' is called a homo-
morphic image of R. A homomorphism of R onto R' which is one-to-
one is called an isomorphism and R' is called an isomorphic image
of R. If f is an isomorphism of R onto R', then f-1 is an isomorphism of
R onto R' and hence each ring is an isomorphic image of the other. In
this event we shall refer to R and R' simply as isomorphic rings. By
virtue of the definition of operations in a difference ring it is clear that a
difference ring R/ S of a ring R is a homomorphic image under the
natural mapping a --} a + S on R onto R/S.

We go on to show next that, conversely, every homomorphic image
of a ring R is isomorphic to a difference ring of R. Let f : R --} R' be a
homomorphism of the ring R onto the ring R'. Then f is a homomor-
phism of the additive group R onto the additive group R', and hence
(Theorem 5.2) if S is the kernel of f (thus S is the inverse image of the
zero element of R'), f = g o p, where p is the natural map on R onto
(the additive group) R/S and g is an isomorphism of R/S onto R'
[indeed, g(a + S) = f (a) ]. The further property off, that it preserves
multiplication, implies that S is an ideal of R. Indeed, if r E R and
s C S, then f(rs) = f(r)f(s) = f(r)O' = 0', whence rs C S. Similarly, if
r C R and s C S, then sr C S. Hence, g establishes R' as an isomorphic
image of R/S. We summarize our results in the next theorem.

THEOREM 7.1. The difference ring R/S of the ring R modulo
the ideal S of R is a homomorphic image of R. Conversely, any
homomorphic image of R is isomorphic to the difference ring R/S,
where S is the kernel of the homomorphism regarded as a homomor-
phism of the additive group R.

We conclude this section with the introduction of some terminology
which will have applications later. A ring R is said to be imbedded
in a ring S if S includes an isomorphic image R' of R. If R is imbedded
in S then S is called an extension of R. If R is imbedded in S it is possible
to construct a ring isomorphic to S which actually includes R as a sub-
ring. One rarely bothers to do this, however, since usually it is not
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necessary to distinguish between isomorphic rings. Instead, one "iden-
tifies" R with R' which, practically speaking, means that henceforth
one regards S as actually including R. Alternatively, one can think of
discarding R, using R' in its place, and appropriating the names of
elements of R for use as names of the respective image elements in S.
It was this latter point of view which was adopted in Chapter 3 in the
successive extensions of the natural number system to the real number
system.

EXERCISES
7.1. Prove that the intersection of a nonempty collection of subfields of a

field F is a subfield of F.
7.2. If a and b are distinct elements of a field F, we define a new addition

8 and a new multiplication O in F as
x©y=x+y-a,x 0 y = a + (x - a)(y - b)(b - a)-'.

Prove that (F, (D, (D, a, b) is a field.
7.3. Prove the assertion made in Example 7.8.
7.4. Prove that under a homomorphism the zero and identity element of a

ring map onto the zero and identity element, respectively, of the image ring
and that negatives map onto negatives.

Remark. For the remaining exercises assume that the definition of a ring is
modified by discarding the requirement that an identity element be present.
Then, for example, the set of even integers forms a ring. Further, assume that
by an integral domain is meant simply a ring (in the above sense) with no proper
zero-divisors.

7.5. Show that a ring A can be imbedded in a ring with identity element.
Hint: In B = Z X A introduce the operations

(m, a)+(n,b) _ (m+n,a+b),
(m, a)(n, b) _ (mn, na + mb + ab),

where na and mb are the nth multiple of a and the mth multiple of b, respectively.
Prove that B with these operations forms a ring having (1, 0) as identity element
and that A is imbedded in B.

7.6. If the ring A of Exercise 7.5 is an integral domain, then the ring B need
not be an integral domain. Establish this fact by taking for A the ring of even
integers.

Remark. The next three exercises are devoted to proving that it is possible
to imbed an integral domain in an integral domain with an identity element.

7.7. Let A be an integral domain, containing elements a and b, with b , 0,
such that ab + mb = 0 for some integer m. Prove that ca + me = 0 = ac + me
for all c in A.
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7.8. Let A be an integral domain and let B be the ring obtained from A and
Z by the construction of Exercise 7.5. The mapping on A into B such that
a -* (0, a) demonstrates that A is imbedded in B and the mapping on Z into
B such that m -3- (m, 0) demonstrates that Z is imbedded in B. Let us identify
A with its image and Z with its image. That is, we shall write simply a for
(0, a) and m for (m, 0). Then, by virtue of the definition of addition in B,
B= {m+almCZand aCA}. Show that C= {bCBiba=Ofor all aEA}
is an ideal of B and that B/C is an integral domain with identity element.

7.9. Prove that the set A' = (a + C E B/Cia C A) forms a subring of B/C
isomorphic to A.

8. A Characterization of the System of Integers

The statement that the system of integers is an integral domain sum-
marizes many properties of, but does not characterize, this system.
The latter assertion is substantiated by the existence of finite integral
domains (see Example 6.9). An additional property of Z, which one
might at least suspect would serve to distinguish it among integral do-
mains in general, is the presence of a simple ordering relation which is
preserved under addition and under multiplication by positive integers.
Since this ordering relation can be formulated in terms of the set of
positive integers it is natural to consider integral domains which include
a distinguished subset having properties (11)-(13) of Theorem 3.3.1,
in connection with an attempt to characterize the system of integers.
This is the motivation for our next definition.

An ordered integral domain is an integral domain D which includes
a subset D+ with the following properties.

O,. If a,bCD+,then a+bCD+.
0. If a,bCD+, then abC D.
Os. For each element a of D, exactly one of a = 0, a C D+,

-a C D+ holds.

The elements of D+ are called the positive elements of D. The elements
a such that -a C D+ are called the negative elements of D. Further,
the members of D+ U {01 are called the nonnegative elements of D.
The relation less than, symbolized by <, is defined in an ordered
domain by

a<biffb-aCD+.
As usual, a < b means that a < b or a = b and b > a means that
a < b. It is clear that a > 0 iff a C D+ and that a < 0 if -a C D+. In
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terms of less than, properties 0,-03 of D can be restated in the following
form:

01. Ifa>0andb>0,then a-{-b>0.
02. Ifa > O and b > 0, then ab > 0.
03. If a E D, then exactly one of a = 0, a > 0, a < 0 holds.

Additional properties of less than include the following.

04 If a < b and b < c, then a < c.
05 For all a and b in D, exactly one of a < b, a = b, b < a holds.
06. If a < b, then a + c < b + c.
07. Ifa < b and c > 0, then ac < bc.
O6. If a 96 0, then a2 > 0.

To prove 04 let us assume that a < b and b < c. Then b - a and c - b
are positive, and hence, by 01, so is their sum c - a. But this means
that a < c. Proofs of 05-07 are left as exercises. To prove O6 let us
assume that a 76 0. By 03, either a > 0 or a < 0. If a > 0, then a2 > 0
by 02. If a < 0, then -a > 0 and (-a)2 > 0, by 02. But (-a)2 = 0.
for any ring element. So, in all cases, if a 5& 0 then a2 > 0.

From 04 and 0s it follows that less than is irreflexive and transitive
and hence < is a partial ordering relation. Supplementing this observa-
tion with O6, 06, and O7, we infer that < is a simple ordering relation
which is preserved by addition and by multiplication with positive ele-
ments. It is left as an exercise to show that, conversely, if D is an integral
domain which is endowed with a simple ordering relation < which is
preserved under addition and under multiplication by elements a such
that 0 < a, then D is an ordered domain.

At this point the reader who has studied Chapter 3 will recognize
that we have established for the ordering relation in an arbitrary ordered
domain all but one of the properties which we proved for the ordering
relation in Z. The exception is concerned with the well-ordering of the
nonnegative elements.

We continue to imitate the developments in Chapter 3 by defining
the absolute value of an element x of an ordered domain as

Ixl _ x, if x > 0,
- .-x,ifx<0.

It is left as an exercise to prove that the absolute value function on an
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arbitrary ordered domain has all the properties which hold in the case

of familiar ordered domains (see Theorem 3.4.4).
If D and D' are ordered domains and f is a one-to-one mapping

on D onto D' which preserves addition and multiplication and maps
positive elements onto positive elements, then f is called an order-
isomorphism of D onto D'. It is left as an exercise to prove that an
order-isomorphism f of D onto D' does preserve ordering, that is,

x < y iff f (x) < f(y),

and that f-' is an order-isomorphism of D' onto D. If there exists an
order-isomorphism of D onto D' we shall say that D is order-isomorphic
to L)' or that D and D' are order-isomorphic. Illustrations of order-
isomorphisms occur in Chapter 3, where we proved that Z is order-
isomorphic to a subset of 0 and, in turn, that Q is order-isomorphic
to a subset of R. Further, if we stretch the basic definition under con-
sideration a little, we can reformulate Theorem 2.1.8 in terms of an
order-isomorphism.

We turn now to the derivation of certain structural properties of
ordered domains which yield as a by-product a characterization of the
ordered domain of integers. In preparation for the first result the reader
should review the discussion of integral systems in Section 2.1.

THEOREM 8.1. An ordered domain D includes a unique subset
consisting of 0 and positive elements which, together with the func-
tion s such that xs = x + 1 and 0, forms an integral system.

Proof. Setting Do = 101 U D+, we note that (i) 0 E Do, (ii) x E Do
implies that xs C Do, (iii) xs v-1 0 for all x in Do, and (iv) xs = ys
implies that x = y. Hence, (Do, s, 0) is a unary system which satisfies
condition I, (that is, s is a one-to-one mapping on Do into Do - {01)
for an integral system. Hence the collection a) of all subsets of Do,
which together with s and 0 satisfy I,, is nonempty. Let ND be the
intersection of the collection D. Then (ND, s, 0) is a unary system
satisfying I,. We claim, further, that (ND, s, 0) satisfies 12, and there-
fore is an integral system. To prove this, consider any subset M of No
such that 0 E M, and if x C M then xs E M. Clearly, M E a) and
therefore No C M, whence M = No.

To prove the uniqueness of ND suppose that I is a subset of D
consisting of 0 and positive elements and such that (I, s, 0) is an inte-
gral system. Then 1 E 2) and so Nn e I. Since 0 E ND and x C No
implies that xs E ND, it follows that ND = I.
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Since for the integral system (ND, s, 0) defined in the above theorem,
addition, multiplication and less than satisfy the defining properties of
addition, multiplication, and less than, respectively, in N, it follows
from Theorem 2.1.8 that an ordered domain D includes a unique sub-
system which is order-isomorphic to the system of natural numbers.
This is not the end of the matter. In order to state the final result it is
convenient to make a definition. If D is an integral domain and E is
a subring of D, then it is clear that E is an integral domain which we
shall call a subdomain of D. If D is ordered, then so is E. The refinement
of the preceding theorem can now be stated as

THEOREM 8.2. An ordered domain D includes a subdomain
order-isomorphic to Z.

Proof. Let ND be the subsystem of D which is order-isomorphic to
the system of natural numbers. If a, b C ND, then D contains a - b,
the solution of x + b = a. Let ZD = (a - bla, b C ND). Then for all
a - b, c - d C ZD,
(1) a - b=c - d if a+d=b+c,
(2) (a - b) + (c - d) = (a + c) - (b + d),
(3) (a - b) (c - d) = (ac + bd) - (ad + bc).
(4) 0<a-b if a - bCND - (0).
Recalling the definition of an element of Z (see Section 3.3), it follows
from (1) that if a, b C ND and a a' and b -- b' under the isomor-
phism between ND and N, then the correspondence a - b -} [(a', b')J;
is a mapping on ZD into Z. Indeed, it is seen immediately that this
is a one-to-one and onto mapping. Moreover, (2) and (3) imply
that this mapping preserves operations, and (4) implies that positive
elements map onto positive elements, whence order is preserved. In
summary, ZD is order-isomorphic to Z.

THEOREM 8.3. An ordered domain D with the property that
the set Do of nonnegative elements of D is well-ordered is order-
isomorphic to Z.

Proof. Again let ND be the subsystem of D which is order-isomorphic
to N. We shall prove first that, by virtue of the added assumption,
ND exhausts the set Do of nonnegative elements of D. Indeed, as-
sume to the contrary that Do - ND 96 0. Then this is a set of posi-
tive elements and has a least member a. Now a Pp 1 (since 1 C ND),
so a > 1 since 1 is the least positive element in D (see Exercise 8.5
in this section). Then a - 1 E Do - ND, since if a - 1 E ND then
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(a - 1) + I = a C ND, contrary to the choice of a. However, since
a = (a - 1) + I and 1 > 0, it follows that a - 1 < a and this con-
tradicts the fact that a is the least element of Do - ND. Thus, the
assumption that Do - ND is nonempty leads to a contradiction, so
we may conclude that Do = ND.

According to Theorem 8.2, D includes along with ND an ordered-
domain ZD which includes ND and is order-isomorphic to Z. Our
proof is completed by showing that ZD exhausts D. For this we use
the fact that if d C D, then exactly one of d = 0, d > 0, d < 0 holds.
In the first two cases d C ND while in the last -d C ND, and therefore
- (-d) = d C ZD. Thus, D = ZD.

As we learned in the foregoing theorem, the system of integers may
be characterized to within isomorphism as the only ordered domain
with the property that the set of its nonnegativb elements is well-
ordered. What amounts to the same, the fourteen properties of Z listed
in Theorem 3.3.1 characterize Z to within an order-isomorphism.

EXERCISES
8.1. Prove properties 05-07 of the ordering relation in an ordered domain.
8.2. Let D be an integral domain in which there is defined a simple ordering

relation < such that if a < b then a +c < b + c and if a < b and c > O then
ac < bc. Prove that D is an ordered domain.

8.3. Let D be an ordered domain. Prove the following properties of the
absolute value function on D.

(i) Ia + bI 5 IaI + Ibl.
(ii) Iabl = IaIIbI

8.4. Prove that if D and D' are ordered domains and f is an order-iso-
morphism of D onto D', then f[D+] = (D')+, f preserves ordering, and f-' is
an order-isomorphism of D' onto D.

8.5. Let D be an ordered domain whose nonnegative elements form a well-
ordered set. Prove that I is the least positive element of D.

8.6. Prove that a$ = b2 implies that a = b in an ordered domain.
8.7. Prove that the cancellation law for multiplication can be deduced from

the other assumptions for an integral domain if the domain is ordered.
8.8. In an ordered domain prove that a2 - ab + b2 >0 for all a and b.

9. A Characterization of the System of
Rational Numbers

In Section 6 a field was defined as a ring F such that the' set F* of
nonzero element is closed under multiplication and (F*, , 1) is a com-
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mutative group. The latter condition implies that each equation of the
form bx = a, with both a and b nonzero has a unique solution, namely
b-'a (= ab-'). We shall also designate this element by

a

b
or a/b.

The equation bx = 0 with b P` 0 also has a unique solution, namely,
x = 0, since b is not a zero-divisor. For this reason we make the defi-
nition

b(=0/b) =0 ifb00.

Computations with field elements written in the form alb may be car-
ied out exactly as with elements of the field of rational numbers. For

example,

a c ac

b d -bd
The first of these, for instance, is simply the identity (ab-1)-1 = a 'b
written in the new notation.

Another important rule is the following:

a __ c iffad =bc.
b

To prove this let us assume first that alb = c/d, that is, that ab-' = cd-1.
Multiplication by bd yields ad = be. Conversely, if ad = bc, then multi-
plication by b-'d-' gives ab-' = cd-' or, otherwise expressed, alb = c/d.

Since our only concern with the theory of fields is to obtain a char-
acterization of the field 0 of rational numbers, we turn directly to a
consideration, in abstract form, of the relationship of 0 to the ring Z
which was used to construct 0. The obvious feature of this relationship
is that 0 is an extension of Z in which division by nonzero elements
can be carried out (that is, the equation bx = a has a solution for b P` 0).
What conditions if any, we ask, must a ring R satisfy in order that there
exist an extension of R in which division by nonzero elements can be
carried out? In other words, what rings can be imbedded in some field?
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Obvious necessary conditions are that the ring be commutative and
that it have no proper zero-divisors. Collectively, these conditions mean
that the ring is an integral domain. We shall prove that, conversely,
these conditions are sufficient.

Although there is no reason to separate the finite case from the infinite
one in proving that an integral domain can be imbedded in a field,
it is worthy of note that there is nothing to prove in the finite case,
since a finite integral domain is a field (see Exercise 6.7). Further, we
argue, the proof which must be supplied in the infinite case has already
been given. Indeed, if the construction in Section 3.4 of the field of
rational numbers from Z is reviewed, suppressing all mention of posi-
tive elements and positiveness, it will be found that only properties of Z
as an integral domain are employed. That is, the construction described
in Section 3.4 may be carried out starting with any integral domain D
and the result is a field QD [that is, a system having properties (1)-(10)
of Theorem 3.4.11, which includes an isomorphic image of D. We inter-
rupt our discussion to state this as our next theorem.

THEOREM 9.1. An integral domain can be imbedded in a field.

The extension QD of an integral domain D which is secured by the
construction in Section 3.4 is called the field of quotients (or quotient
field) of D. An element of QD is an equivalence class of ordered pairs
(a, b), where a, b C D and b 0 and the subset of QD which is iso-
morphic to D consists of those equivalence classes having representatives
of the form (a, 1). The isomorphism in question maps a onto [(a, 1)].
We shall identify a and [(a, 1) ] which implies, since an arbitrary ele-
ment [(a, b) ] of QD can be written as [(a, 1)][(b, 1)1-', that the elements
of QD consist of all quotients alb where a, b C D with b s 0 and
alb = c/d if ad = bc.

The field QD is the smallest field in which D is imbedded, in the sense
that any field Fin which D is imbedded includes a subfield isomorphic
to Qo. To prove this, let us assume that D is imbedded in F. We shall
prove that QD is also imbedded in F. Let D' be the isomorphic image
of D in F and consider the subset F' of F where

F' = {a'(b')-'Ia', b' C D' andb' ; 01.
It is a routine exercise to prove that F' is a subfield of F. Assuming that
this has been done, we go on to show that F' is an isomorphic image of
Qo under the mapping f on QD onto F' such that

f(a/b) = a'(b')-',
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where x' is the image in D' of x in D under the given isomorphism of D
onto D'. From the definition of F', f is onto P. Further, f is one-to-one
since if a'(b')-' = c'(d')-' then, in turn, a'd' = b'c', ad = bc, alb = c/d.
Finally, we note that

alb + c/d = (ad + bc)/bd ->- (ad + bc)'((bd)')-'
_ (a'd' + b'c')(b')-'(d')-l

= a'(b')-' + c'(d')-'

and

(a/b)(c/d) = ac/bd -+- (ac)'((bd)')-' = a'c'(b')-'(d')-'
(a'(b')-') (c'(d')-').

Hence, f is an isomorphism of QD onto P.
A field is said to be an ordered field if, when considered as an integral

domain, it is an ordered domain. In the event that an integral domain D
is ordered, then its field of quotients, QD, is an ordered field. That is,
QD includes a subset QD which is closed under addition and multiplica-
tion and has the property that if x C QD, then exactly one of x = 0,
x C Qv, -x E Qn holds. Our candidate for Qn is

{a/b C QDjab > 01.

It is closed under addition since if a/b, c/d C Q, , then

(ad + bc)bd = abd2 + b2cd > 0,

since ab > 0, cd > 0, and so on, whence alb + c/d E Q+. It is closed
under multiplication, since if ab > 0 and cd > 0, then abcd > 0. Finally,
it is immediately seen that if alb C QD, then exactly one of ab = 0,
ab > 0, ab < 0 holds. Hence, QD has the three required properties and
the field QD is ordered.

We note that what we have done is to make use of the given ordering
of D to define an ordering of its quotient field. Since we have identified
the element a in D with the element all of QD, it is clear that a is a
positive element of D if a is a positive clement of QD. That is, our
ordering of the quotient field is an extension of the given ordering of D.
We can prove further that the ordering which we have introduced for
QD is the only ordering which extends that of D. For this we recall that
in an ordered domain a nonzero square is always positive. If the quo
tient alb is positive, then the product (a/b)b2 = ab must be positive)
and conversely. Hence, in any ordered field,

alb > 0 if ab > 0.
This completes the proof of
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THEOREM 9.2. The quotient field QD of an ordered integral
domain D is ordered upon defining alb as positive if ab is a positive
element of D. This is the only way in which the ordering of D can
be extended to an ordering of Qn.

In an ordered field the relation of less than is defined as in any ordered
domain; that is, a < b if b - a is positive. In addition to the properties
0; Os in Section 8, there are the following for the ordering relation of
an ordered field.

0<1/aiffa>0.
alb < c/d iff abd2 < b2cd.
0<a<bimplies 0<1/b<1/a.
a <b <0implies 0> 1/a> 1/b.
ai+a2--.. +an>0.

Our next theorem yields a characterization of the field of rational
numbers.

THEOREM 9.3. An ordered field F includes a subfield order-
isomorphic to the field of rational numbers.

Proof. Since an ordered field is an ordered domain, Theorem 8.2
is applicable and we may conclude that an ordered field F includes
a subdomain D order-isomorphic to Z. From the argument after
Theorem 9.1 it follows that F includes an isomorphic image of the
quotient field of Z; that is, F includes an isomorphic image of Q.

This result gives a characterization of Q as the smallest ordered field
(to within isomorphism, naturally). The statement that 9 is an ordered
field summarizes properties (1)-(13) of Theorem 3.4.1. The "smallness"
of 0 is the content of (14) of that same theorem.

If F is an ordered field, then the ordered subfield of F which is iso-
morphic to 9 is called the rational subfield of F. It should be clear
that it consists of just those elements of F having the form

ml /ni,

where 1 is the identity clement of F and m and n are integers with
n$0.

We conclude this section with the introduction of one further notion
for ordered fields. The ordering of an ordered field F is said to have
the Archimedean property if for every pair a, b of elements of F with



366 Several Algebraic Theories I C H A P. 8

a > 0, there exists a positive integer n such that na > b. The origin of
this definition is the property of the ordered field 0 which is stated in
Theorem 3.4.3 and of the ordered field R stated in Theorem 3.6.3.
Although in the statement of Theorem 3.4.3, "nr" is interpreted to be
a product of field elements, such a product has an interpretation in
any field as an nth multiple, and this is the interpretation intended in
the general case. Since in the case of 0 the interpretation of nr as a
field product and as the nth multiple of r coincide, the ordering of the
field of rational numbers has the Archimedean property in the sense
of the general definition.

If the ordering of an ordered field F has the Archimedean property,
we shall refer to F as an Archimedean-ordered field. If F is Archi-
medcan-ordered, then its rational subfield is dense in F in the same
sense that Q is dense in R (Theorem 3.6.2). We prove this next.

THEOREM 9.4. If F is an Archimcdean-ordered field and a and
b are in F and a < b, then there exists an element c of the rational
subfield Q of F such that a < c < b.
Proof. Consider first the case where a > 0. Since b - a > 0, there
exists a positive integer n such that n(b - a) > 1, so
(1) nb>na+1.
Also, there exists a positive integer m such that ml > na. Supposing
m to be the smallest such positive integer,

ml >na> (m-1)1,
since 1 is positive. In view of (1) it follows that

nb> (m-1)1 +1 =ml >na.
Hence, b > ml/nl > a, which is the desired conclusion.

If a < 0, then there exists a positive integer p such that pl > -a,
and then a + pl > 0. By the first part of the proof, there is an ele-
ment c in Q such that a + pl < c < b + pl. Hence, a < c - p1 < b,
where c - p1 E Q.

EXERCISES
9.1. Prove those properties of less than which are stated immediately follow-

ing Theorem 9.2.
9.2. Prove that the positive elements of an ordered field are not well-ordered

by the given ordering relation.
9.3. Let P be the set of all sequences

(ak) = (ao,
a1,

. ., a,, . . .)
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of rational numbers having only a finite number of nonzero members. We
define (ak) = (bk) if ak = bk for all k. We introduce operations into P by the
following definitions:

(ak) + (bk) = (Sk) where Sk = ak + bk,
(ak)(bk) = (Pk) where pk = E aib;.

i+j-k
(a) Prove that (P, 0, 1), where 0 = (0, 0, . . ., 0, . . .) and 1 =

(1, 0, . , 0, ), is an integral domain.
(b) Defining P+ to be the set of all elements (ak) of P such that the last non-

zero member of (ak) is a positive rational, show that P is an ordered
domain.

(c) Using Theorem 9.2, the quotient field Qp of P is an ordered field. Show
that this ordering does not have the Archimedean property by proving
that if x = (0, 1, 0, , 0, ), then for no positive integer n is ni > x.

9.4. Prove that the ordering of an ordered field F has the Archimedean
property if for each element a of F there exists a positive integer n such that
nl > a.

9.5. Prove that if F is an Archimedean ordered field, then for each element
a in F there exists a positive integer n such that -nl < a and there exists a
positive integer n such that 1/nl < a if a is positive.

10. A Characterization of the Real Number System

An ordered field F is called complete if every nonempty subset of F
which has an upper bound has a least upper bound. According to
Exercise 1.11.15, an ordered field F is complete if every nonempty
subset of F which has a lower bound has a greatest lower bound. Thus
the notion of completeness takes a symmetric form which is seemingly
lacking in its definition. According to Theorems 3.6.1 and 3.6.4, the
real number system is a complete ordered field. In this section we shall
prove that these properties of R characterize it to within isomorphism.
As the first step in this direction we prove three results about complete
ordered fields.

THEOREM 10.1. If F is a complete ordered field, then the order-
ing has the Archimcdean property.
Proof. Assume to the contrary that there exists a pair a, b of elements
of F with a > 0 such that for all positive integers n, b > na. Then b
is an upper bound of { na C Fln C Z } 1. Since F is complete, this set
has a least upper bound c. Then every positive multiple of a is less
than or equal to c, so that (m + 1)a < c for every positive integer m.
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This implies that ma < c - a, so c - a is an upper bound for
Ina C Fln C Z+}. Since c - a < c, this contradicts the property of c

of being the least upper bound.

COROLLARY. If F is a complete ordered field, then its rational
subfield is dense in F.

Proof. This follows from Theorem 9.4.

THEOREM 10.2. Let F be a complete ordered field and Q be
its rational subfield. For a member c of F let

Ac _ {a C Qla < c} and B,, _ {b E Qjb > c}.

Then both the least upper bound of A, and the greatest lower bound
of B, exist and

lub A. = c = glb Bc.

Proof. By the Corollary above there is in Q an element a such that
c - I < a < c, so A. is nonempty. Also, c is an upper bound for A.,
and hence the least upper bound of A. exists and is less than or equal
to c. To prove equality we assume that lub A. < c and derive a con-
tradiction. If lub A, < c, then there exists an a' C Q such that
lub A. < a' < c. This is a contradiction since, on one hand, it implies
that a' E A, and, on the other hand, it asserts that a' > lub A,.
The proof that the greatest lower bound of B, exists and is equal to c
is similar.

We are now in position to prove the main theorem of this section,
namely, that to within isomorphism there is only one complete ordered
field.

THEOREM 10.3. Any two complete ordered fields are order-
isomorphic.

Proof. Let F and(F' be complete ordered fields and Q and Q' their
respective rational subfields. Then Q and Q' are order-isomorphic
since each is order-isomorphic to the field of rational numbers. If f
is the isomorphism of Q onto Q' we shall write x' for f(x) and X' for,
f [X] if X C Q. Further, we shall denote members and subsets of Q'
by primed letters and their counterimages in Q by the same letters.
without primes.

The strategy of the proof is to define an extension of f having F.
as domain and which can be proved to be an order-isomorphism of
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onto P. To this end, consider an element c of F. Defining A. and B.
as in Theorem 10.2, we know that lub A. = c = glb B0. If b' E B'C,
then for each a' E A',, a' < b' since a < c and c < b. Hence, b' is
an upper bound for A', so the least upper bound of A' exists and is
less than.or equal to Y. ,Since this holds for each b' in B',, lub A., is
a lower bound for B',, and then the greatest lower bound of B', exists
and lub A', < glb B'. We establish equality here by showing that
the other possibility leads to a contradiction. Indeed, the assumption
that lub A', < glb B', implies that there exists a d' in Q' such that

lubA' <d' <gibB:.
If c C Q, so that c' would be a possible choice for d', we select a d'
different from c'. It follows that for the corresponding element d of Q
we have

(1) a<d<b
for every a in A., and every b in B.. Since either d < c or c < d, either
d C A, or d C B., which, in view of (1), yields the contradiction d < d.
Thus, we have proved that

lub A' = glb B".

In case c C Q, it is clear that lub A,' < c' < glb B', and hence

(2) tub A', = c' = glb B.
In case c C F - Q, we define c' by (2). It is this extension of f which
we shall prove is an order-isomorphism of F onto F.

We show first that this mapping preserves ordering. Let cl, c2 C F
and cl < c2. Then there exist a, b E Q such that

cl<a<b<c2,
whence a C B0, and b C A,,, so that a' C B, and b' C A'. By (2),
cl = glb BB, and ca = lub Aa, so

ci<a'<b'<ca.
Hence, cl < cs implies that cl' < ca. As a by-product of this we have
the result that the mapping c - - c' is one-to-one. The proof that it is
also onto F' is left as an exercise.

We show next that the mapping in question preserves addition;
that is, if cl, c2 C F, then (cl + c2)' =

c1'
+ ca. Let a', and as be mem-

bers of A', and A,,, respectively. Then al and as are members of Q
such that al < cl and as < C2. Further, al + as < cl + as < cl + cz,
so that al + as < cl + c2. Hence
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ai + a' = (a, + a2)' < (c, + c2)'
and, consequently,

a', < (c1 + c2)' - a2'-

Since ai is an arbitrary element of A' we infer that
c; = lub A,', < (c, + c2)' - a$)

which implies that

i CHAP. 8

a2 < (c, + C2)' - Ci

for all as in A. Hence, in turn,
c$ = lub A' < (c, + c2)' - ci,

c' + Cl' (Cl + C2)'-

A similar argument, in which cl and cs are interpreted as greatest
lower bounds, establishes the reverse inequality. Thus, we have
proved that

Ci + C2 = (CI + c2)'.

The proof that the mapping c -'- c' preserves multiplication is some-
what more complicated. We consider first the case of positive ele-
ments. Suppose that c, and c2 are positive elements of F and let
a; and as be positive elements of A', and A', respectively. Then at
and at are positive elements of Q such that a, < c, and as < c2.
Further, a,a2 < C1C2 < tics, so that alas < c,c2. Hence

a',a2' = (alas)' < (cic2)'.

Thus, for each positive element as in A' ,

a, < (CIC2)'(a2')

for all positive ai in A. Hence

c; = lub A',, < (c,c2)'(a2)-1,
which implies that

as < (clc2)'(4)-'

for all a2' in Ate, and then

c2 = lub A'C. < (c,ct)'(c;)

Thus, C;cg < (c,c2)'. A similar argument, in which c; and c2' are in.
terpreted as greatest lower bounds, establishes the reverse inequality
Thus

(3) elcs = (C1C2)',

where c, > 0 and C2 > 0.
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Finally, we extend (3) to all cl and C2. If one or both of c1 and c2
is equal to 0, then (3) is true trivially. If c, > 0 and c2 < 0, then the
restricted version of (3) applies to c, and -c2. This, together with the
fact that c c' is an isomorphism of the additive group F onto the
additive group F', justifies the following computation:

414 = Ci(-(-C8)) _ -(C'(-Cz))
-(C1(-C2))' _ - (- (C1C2))' = - (- (CIC2)') = (C1C2)'-

The proof of (3) for the case c, < 0 and c2 < 0 is left as an exercise.

There are other characterizations of R ; these stem from other methods
of extending Q. to obtain a system with the least upper bound property
(that is, the existence of least upper bounds for nonempty sets having
an upper bound). Before describing one of these we call attention to the
point of view adopted in the constructions of Chapter 3. There, in
order to correct a "deficiency" of N, of Z, and of Q, we constructed
in turn a new system designed to avoid the deficiency at hand and simul-
taneously to include a subsystem isomorphic to the parent system. The
characterizations of Z, 0, and B. obtained so far in this chapter estab-
lish the fact that in each case we obtain a minimal extension with the
desired property (as asserted in the introduction to Chapter 3). An
alternative point of view for these constructions includes taking into
account from the outset the desired feature of minimality of the exten-
sions. For instance, in the extension of N to Z, this point of view mani-
fests itself by adjoining to N a suitable disjoint set to serve as the negatives
of the nonzero natural numbers. Similarly, the third extension is ap-
proached as the problem of constructing a minimal extension of 0,
considered merely as a dense chain, having the least upper bound
property. The first step in the solution is the construction of an exten-
sion of Q (that is, a dense ordered chain which includes 0 and which
preserves the given ordering of the elements of Q), having the least
upper bound property. The second step is the proof that, within
isomorphism, there is only one such extension E which is a part of any
suitable extension and which has the following two properties : (i) an
element of Q which is a least upper bound of a subset S of 0 continues
to be a least upper bound of S in E, and (ii) every element of E is a
least upper bound of some set of rationals having an upper bound
in Q. Finally, such a minimal set is selected and the operations of addi-
tion and multiplication extended to it from its subsystem 0. The result
is a complete ordered field and, hence, R.
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Apart from this approach leading to, what is from our viewpoint, a
characterization R, it is of interest that there exist extensions of Q
which lack either property (i) or (ii) above. Such extensions when
equipped with operations become fields which fail to have the Archi.
medean property (and so are called non-Archimedian ordered fields).

EXERCISES
20.1. Prove that every Archimedean-ordered field is isomorphic to a subfield

of R.
10.2. Supply the missing parts of the proof of Theorem 10.2.
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Section 2. A more comprehensive introduction to the theory of semigroups

appears in C. Chevalley (1956).
Sections 3-5. There are several excellent textbooks devoted to group theory.

W. Ledermann (1953) is an introductory account of the theory of finite groups,
More complete accounts of the entire theory appear in M. Hall, Jr. (1959) and
A. G. Kurosh (1955).

Sections 6-7. Accounts of the topics treated appear in every textbook of
modern algebra.

Sections 8-10. Most of the notions discussed are treated in textbooks de-
voted to modern algebra. The proof of Theorem 10.3, that any two complete
ordered fields are order-isomorphic, is taken from E. J. McShane and T. A.
Botts (1959).



CHAPTER 9 First-order Theories

IN THIS CHAPTER we give an introductory account of modern in-
vestigations pertaining to formal axiomatic theories-that is, axiomatic
theories in which there is explicitly incorporated a system of logic.
particular attention is paid to those theories for which the logical base
is the predicate calculus of first order. These are described in Section 4
after disposing of a necessary preliminary in Sections 2 and 3, namely,
an axiomatization of the first-order predicate calculus. Section 7 gives
an account of the notions of consistency, completeness, and categoricity
for first-order theories, using results obtained in Section 6. After a brief
introduction to recursive functions in Section 8, the notion of decid-
ability for first-order theories is examined in Section 9. In this section
there is sketched a proof of the famous theorem, due to Church, which
asserts the unsolvability of the decision problem for the first-order
predicate calculus. In Section 10 appear two other famous theorems
about formal axiomatic mathematics. These are the Godel theorems of
1931. One asserts that a sufficiently rich formal theory of arithmetic is
either inconsistent or contains a statement that can neither be proved
nor refuted with the means of the theory. The other asserts the im-
possibility of proving the consistency of such a theory, if, indeed, it is
consistent. Such results may be interpreted as establishing definite lim-
itations for the axiomatic method in mathematics. Section 11 is con-
cerned with a brief discussion of the Skolem paradox for a formulation
of set theory as a first-order theory.

1. Formal Axiomatic Theories

In order to achieve precision in the presentation of a mathematical
theory, symbols are used extensively. A formal theory carries symboliza-
tion to the ultimate in that all words are suppressed in favor of symbols.
Moreover, in a formal theory the symbols are taken to be merely marks
which are to be manipulated according to given rules which depend
only on the form of the expressions composed from the symbols. Thus,

373
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in contrast to the usual usage of symbols in mathematics, symbols in a
formal theory do not stand for objects. One further distinguishing
feature of a formal theory is the fact that the system of logic employed
is explicitly incorporated into the theory.

We require additional properties of the formal theories which we
shall discuss. These involve an auxiliary notion which we dispose of
first. In nontechnical terms, an effective procedure is a set of instruc-
tions that provides a mechanical means by which the answer to any
one of a class of questions can be obtained in a finite number of steps.
An effective procedure is like a recipe in that it tells what to do at
each step and no intelligence is required to follow it. In principle, it is
always possible to construct a machine for the purpose of carrying out
such instructions.

The formal theories with which we shall be concerned are axiomatic
theories. In such theories formulas are certain strings (that is, finite
sequences) of symbols. We require the following properties of formulas.

(I) The notion of formula must be effective. That is, there must be
an effective procedure for deciding, for an arbitrary string of
symbols, whether it is a formula.

(II) The notion of axiom must be effective. That is, there must be
an effective procedure for deciding, for an arbitrary formula,
whether it is an axiom.

(III) The notion of inference must be effective. That is, there must
be an effective procedure for deciding, for an arbitrary finite
sequence of formulas, whether each member of the sequence
may be inferred from one or more of those preceding it by a
rule of inference.

In such a formal axiomatic theory the notion of proof is effective; that
is, there is an effective procedure for deciding, for an arbitrary finite
sequence of formulas, whether it is a proof. Such an effective procedure
does not furnish a method for discovering proofs. It merely enables one
to decide whether a purported proof is, in fact, a proof.

We do not require the notion of theorem to be effective. If there can
be found for a theory an effective procedure for deciding, for an arbitrary
formula, whether it is a theorem, the theory often loses its appeal to
mathematicians. For the implication of the notion of theorem being
effective is that one can devise a set of preassigned instructions for a
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machine such that it could check formulas of the theory to determine
whether they are theorems. Mathematical logicians have shown that
for many interesting axiomatic theories the notion of theorem is not
effective. We emphasize that this means the nonexistence of effective
procedures for "theoremhood" has been proved for some theories and
not merely the nondiscovery to date of effective procedures. It follows that
human inventiveness and ingenuity is necessary in mathematics.

A problem which must be faced in presenting a formal axiomatic
theory is how to specify the system of logic to be used. One obvious way
is to give the rules of inference. In all interesting systems the set of rules
is infinite, and there arises the problem of how to specify the set in such
a way that one can determine whether a particular rule is in the set.
The solution we shall employ calls for specifying a finite set of rules of
inference and adding logical axioms to those of the axiomatic theory
for the purpose of generating theorems which express further logical
principles. That is, the solution calls for the fusion of an axiomatized
system' of logic with an axiomatic theory to produce a formal axiomatic
theory. Of the systems of logic which might be used in this connection,
we shall choose the predicate calculus of first order. Our justification
for this choice is that it formalizes most of the logical principles accepted
by most mathematicians and that it supplies all the logic necessary for
many mathematical theories. In the next two sections we describe an
axiomatization.

2. The Statement Calculus as a Formal Axiomatic Theory

In view of the role of the statement calculus in a theory of inference
(Section 4.4), the goal of an axiomatization is a formal axiomatic theory
in which the theorems are precisely the tautologies. This was first
achieved by Frege, in 1879. Since then, many formulations have ap-
peared. That which we shall present is the simplification of Frege's
formulation due to -.ukasiewicz. The primitive symbols (or formal
symbols) are

a B e a1 B1 e1 ...

The symbols in the second row are called statement variables. The
three dots, which are not symbols, indicate that the list continues
without end. We define formula inductively as follows.
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(I) Each statement variable alone is a formula.
(II) If A and B are formulas, then (A) - (B) is a formula.

(III) If A is a formula, then -1 (A) is a formula.
(IV) Only strings of primitive symbols are formulas. A string is a

formula only if it is the last line of a column of strings, each
either a variable or obtained from earlier strings by (II) or (III).

As in the definition of formula, we shall use capital English letters as
variables for arbitrary formulas. It can be proved that the notion of
formula is effective. In applications the statement variables are replaced
by the prime formulas, and hence are interpreted as designating the
values of the prime formulas (that is, the truth values T and F). In terms
of the definitions made in Section 4.3, a truth value may be assigned to
any formula A for a given assignment of values to the variables of A.
When writing formulas, the conventions described earlier regarding the
omission of parentheses will be followed. Also, we introduce the following
abbreviations for certain formulas:

AV B for -,A->B,
A A B for (A ---). --I B),
A- B for (A-'B)A(B-'A).

The axioms for the theory are the following formulas, where A, B,
and C are any formulas:

(PC1) A -' (B -' A),
(PC2) (C ---> (A B)) - ((C --> A) --j (C - B)),
(PC3) (-, A -> -, B) -> (B -> A).

Writing the axioms with variables for arbitrary formulas means that
each of (PCi)-(PC3) includes infinitely many axioms, one for each
assignment of formulas to the variables occurring. [This agreement is
signaled by referring to each of (PC1)-(PC3) as an axiom schema.]
For example, by virtue of (PC1), each of

(a 631) ((B (a -+ (Bi))
is an axiom. Even though there are infinitely many axioms, the notion
of axiom is effective, since each axiom must have one of three forms.

The only rule of inference is modus ponens (see Example 4.4.6) : From
formulas A and A -> B the formula B may be inferred.

The exact form which the definition of proof (Section 5.1) takes for
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the statement calculus is as follows. A (formal) proof is a finite column
of formulas, each of whose lines is an axiom or may be inferred from
two preceding lines by modus ponens. A (formal) theorem is a formula
which occurs as the last line of some formal proof. We shall symbolize
the assertion that A is a theorem by

I- A.

An illustration of a formal proof is given next. It is a proof of the formula
a a a. It follows that F a --> a.

(1) (a --> ((a3 -- a) -- (0) - ((a -> ((B --+ (0) --j (a - a))
Axiom schema (PC2)

(2) a --+ ((a3 -> a) -> a) Axiom schema (PC1)
(3) (a -> ((B --> a)) -> (a - a) 1, 2 modus ponens
(4) a -' (a3 -' (t) Axiom schema (PC1)
(5) a a 3, 4 modus ponens

When a proof is given, an analysis is usually given in parallel, as
above. This is not required, however, because there is an effective
procedure for supplying an analysis.

We observe that we can just as easily prove I- a3 -+ a3 or F- (e A a) -->
(e A a) by repeating the above sequence of formulas with M or e A a
in place of a. Indeed, if in the above formal proof we substitute
any formula A for the statement variable a, we get a formal proof of
the formula A -' A. But if, instead, we substitute the variable "A" for
a (and, "B" for a3) we get a proof schema of the theorem schema
"A - A." A theorem schema, like an axiom schema, has the merit
that a theorem results when the same formula is chosen for all occur-
rences of any letter that appears in it.

We now extend- the definition of theorem to that of deduction from
assumptions. If r is a (possibly infinite) set of formulas and A is a
formula, then we define D(r, A) to be the set of those finite columns X
of formulas whose last line is A, such that each line of X is either an
axiom or an element of r or else may be inferred from two earlier lines
of X by modus ponens. If, for given I' and A, D(P, A) is nonempty, then
A is said to be deducible from assumptions I', symbolized

r i- A,

and a member of D(r, A) is called a (formal) demonstration of A
from I. Basic conditions which these definitions satisfy include the
following.
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(i) If there is an effective procedure for deciding whether a given
formula is a member of the set r, then, for each A, there is an
effective procedure for deciding whether a column of formulas is
or is not a member of D(r, A) [that is, is a demonstration of A
from r I.

(ii) P F- A whenever A is a member of I' or an axiom.
(iii) if rF-Aand rF-A->B,then rF-B.
(iv) If r F- A, then, for each set A of formulas, r u A F- A.
(v) If I' F- A and r is the empty set, then F- A.
(vi) If r F- A, then there exists a finite subset r, of r such that

r1F-A.

Condition (iii), for example, follows from the fact that if X C D(r, A)
and Y C D(r, A --> B), then (X, Y, B), the column consisting of the
formulas of X in order, followed by those of Y in order, followed by B,
is a member of D(I', B).

If in a formal axiomatic theory the notion of deducibility is analyzed
into simple steps and the axioms (or, axiom schemas) are few in num-
ber, then formal demonstrations and formal proofs of even quite an
elementary character tend to become long. However, having once
given an explicit definition of what constitutes a deduction from as-
sumptions (and, hence, a formal proof) it is not always necessary to
appeal directly to the definition. The alternative is to establish theorems,
called derived rules of inference, which assert the existence of proofs
under various conditions. An illustration of such a rule for the state-
ment calculus is provided by (iii) above. A useful instance of (iii) is
the derived rule

If F- A and F- A --> B, then F- B.
An application of this rule or of the generalization [which follows from
(iii) and (iv) ],

If r F- AandF- A -'B,thenrI- B,
is commonly called "modus ponens" because of the similarity of each
to the rule of inference, which has a like form. Another derived rule,
one which plays a crucial role in the proof that the formalized statement
calculus fulfills its intended role (and which appears later in an extended
form), is given in

THEOREM 2.1 (the deduction theorem for the statement calculus).
If r is a set of formulas and A and B are formulas, then

r u JAI F- B implies I' F- A --, B.
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Proof. t Assume that r, A F- B and let the column
X=(C1,C2,...,Q

be a formal demonstration of B from r u { Al. For each i = 1,
2, , n we define by induction a column Y; as follows.

Case 1. If C; is an axiom or an element of r, let Y; be the column
(A-->C1),A- Q.

Case 2. If C, is A and Case 1 does not hold, let Y. be the column
whose lines in order are the proof, given earlier, of A --* A.

Case 3. If C, is inferred from two earlier lines C, and C, -- C,
of X by modus ponens, and the preceding cases do not hold, and j
is the least index for which there is such a C,, let Y, be the column

(Y j, Yk, (A - (Ci `i C,)) - ((A - C,) - (A - C,)),
(A -, --' (A - C,),A--+C,).

Here k is the least index for which Ch is C, -+ C,.

It is left as an exercise to prove by induction that for each i = 1,
2, , n, Y, is in D(r, A -- Q. Since C. is B, this gives the desired
result that r F- A -> B.

COROLLARY. If A1j A2, , A. F- B, then

F- At --* (A2 (... (Am - B) ...

Repeated application of the theorem gives the corollary. The con-
verse of this result is the next theorem. Its proof is left as an exercise.

THEOREM 2.2. If F- A, -+ (A2 ( (Am --> B) )), then At,
A2, ... , A. F- B.

In view of property (vi) of deducibility, Theorems 2.1 and 2.2 accom-
plish the reduction of the notion of deducibility to that of provability.
A comparison of these theorems with the Corollary to Theorem 4.4.1
shows the parallel between this result and the reduction of the notion
of valid consequence to the notion of validity. It follows that if we can
show that a formula A is a theorem if it is a tautology, we will have
demonstrated the equivalence of the informal and the formal statement
calculus, both by themselves and when applied under a set of assumption
formulas. We do this in the next two theorems. First, it may be noted

t Hereafter we shall abbreviate "r u JAI F- B" to "r, A F- B" and "JAI, A,, , A. 1
f- B" to "A,. A,, . ,A, F- B."
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that in the present circumstances we understand a tautology to be a
formula such that for each assignment of truth values to its constituent
statement variables, it is assigned truth value T in accordance with the
truth tables for -i and -'.

The theorem which asserts that every tautology is a theorem is an
example of a completeness theorem in the positive sense, as discussed
in Section 5.4. It can be derived easily from the following lemma.

LEMMA 2.1. Let A be a formula of the statement calculus in which
occur only statement variables from the list P1j P2, , Pk. Define p
to be Pi or -' Pi according as P; takes the value T or F and A' to be A
or -1A according as A takes the value T or F for an assignment of
truth values to P1j P2, , A. Then
(1) P., P2, ...,P' -A'
for every assignment of truth values to P1, P2, , P.
Proof. The proof is by induction on the number of symbols in A,
counting each occurrence of -, or -+ as a symbol. If n = 0, then A
is some Pi. Then A' is P; and (1) is immediate. Assume the lemma
true for all formulas with less than n symbols and consider A with n
symbols.

Case 1. A is of the form -1 B. Then, by the induction hypothesis,

(2) PP, P2, ... , P.' I- B'

for all assignments of truth values to P1, P2, , P.
Subcase 1.1. B takes the value T. Then A takes the value F, B' is B,

and A' is -, A, that is, -, -s B. Now F- B -' -, -, B (see Exercise 2.3)
and (2) reads P;, P2, , P,, F- B; then, by modus ponens, p,
P2i ,P,'F- -i B, which is (1).

Subcase 1.2. B takes the value F. Then A takes the value T, B' is
-1 B, and A' is A, that is, -, B. Then (2) gives P,, P2f , P,' F- B,
which is (1).

Case 2. A is B --j C. Then, by the induction hypothesis,

(3) P1, P2, ...,P.F- B',
(4) P1, P2, ... , P,r F- C'.

Subcase 2.1. C takes the value T. Then A takes the value T, C'
is C and A' is A, that is, B --> C. Hence, (4) is P,, P2, , P,' F- C
and (PCI) gives F- C -1 (B --> C), so that, by modus ponens, P;,
P2, ,P,' F- B-C, which is (1).

Subcase 2.2. B takes the value F. Then A takes the value T, B' is
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-1 B, and A' is A, that is, B --> C. Hence, (3) is P, Ps, , P' , F- -1 B
and this, with I- -- B --+ (B --> C) [see Exercise 2.3], yields (1) again
by modus ponens.

Subcase 2.3. B takes the value T and C takes the value F. Then A
takes the value F, B' is B, C' is -i C, and A' is -1 A, that is, (B --a C).
Hence, (3) is P;, P2i , P,', I- B and (4) is P,, Pa, , Pk F- -1 C.
These, together with the theorem B --- (-1 C - -1(B -' C)), yield
P;, P27 , Pk 1- -1 (B -- C), which is (1).

THEOREM 2.3 (the completeness theorem for the statement calcu-
lus). If A is a tautology, then A is a theorem; that is, if i A, then
F- A.

Proof. Let P1, P2, , Pk be the distinct statement variables occur-
ring in A and define P;, Pa, , Pk and A' as in Lemma 2.1. Since
i A, A' is always A, and then, by Lemma 2.1, P,, P2, , P,t F- A for
every assignment of truth values to P1, P2, , P,. In particular,
(5) P,, P2, ... , Pk_ 1, Pk F- A,
(6) P1, P2, ... , Pk_ 1, -, PA: I- A

for every assignment of truth values to P1, P2, , Pk_l. From the
deduction theorem it follows that

(7)
(8)

P1, P2, ... P.'_ 1 Pk -+ A,
Pi, P2f . , P. -I F- -, Pk -> A.

These deductions, together with the theorem

(Pk--+A) -' ((--1 Pk -+A) A),

which the reader may prove, give P,, P2, , Pk _ 1 F- A. Thus the
assumption Pk is eliminated. Repeating this process k - 1 times
eliminates all the assumptions, so that F- A.

The converse of the completeness theorem is easily proved as we
show next.

THEOREM 2.4. If A is provable, then A is a tautology; that is,
if F- A, then r- A.

Proof. We observe first that each instance of an axiom schema is a
tautology; that is, the theorem is true for the axioms. Further, by
Theorem 4.3.3, if r- A and K A -+ B, then t= B. Since every theorem
is either an axiom or comes from the axioms by one or more uses of
modus ponens, every theorem is a tautology.
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That is, the notions of validity and provability for the statement
calculus are coextensive. This result was proved first in 1921 by the
American logician, Emil Post.

There is more to be said about the foregoing result. We first remark
that we assume it clear that the process provided in the definition
(Section 4.3) for determining the truth value of a formula A for a given
assignment of truth values to the statement variables in A is effective.
Since any A has only a finite number of variables, and hence only a
finite number of sets of values of its variables, this leads to an effective
procedure for deciding whether A is a tautology or not. Hence, since
H A if K A, there is an effective procedure for determining whether a
formula of the statement calculus is a theorem; that is, the notion of
theorem is effective. More generally, the notion of provability is effec-
tive; that is, there is an effective procedure for obtaining a proof of a
theorem (which is known to be such because it has been shown to be a
tautology). This follows from the fact that the procedures given in the
proofs of Theorem 2.3 and Lemma 2.1 are effective. We shall sub-
stantiate this, in part, by showing that the proof of Lemma 2.1 pro-
vides an effective procedure for finding a proof of A' from assumptions
P;, P,, , P. If A has no occurrence of --+, this is provided directly.
If A has occurrences of ---, the proof provides directly an effective re-
duction of the problem of finding a proof of A' to the two problems of
finding proofs of B' and C' from assumptions P,, P,, , P. The same
reduction can then be repeated upon the latter two problems, and so
on. Since the reduction process terminates after a finite number of
repetitions, there results an effective proof of A' from PP, P,, P.
A similar analysis can be made of the proof of Theorem 2.3.

Our next theorem follows directly from the Corollary to Theorem 2.1
and Theorems 2.2-2.4. Its application to obtaining derived rules of
inference for the statement calculus is illustrated in the examples which
follow.

THEOREM 2.5. A,, A2, , A. 1- B iff
A. (AQ ... (Am --i B) ...)

is a tautology.

EXAMPLES
2.1. Theorem 2.5 enables one to establish derived rules of inference with

appropriate tautologies for justification. Below are listed a few such rules, with
the tautology which justifies each placed opposite.
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A f- A V B, K A -i, (A V B).
A V B, A I- B, A V B -+ (--i A -+ B).
A, B I- A, A -- (B A).
-, B -' -, A I- A -' B, K (- B -- A) --> (A -- B).
-,B-> -,A, A l- B, i (-1B- -1A) (A --+ B).

2.2. As an illustration of imbedding a system of logic in an axiomatic theory,
an idea which was proposed at the end of Section 1, we outline how the state-
ment calculus can be imbedded in an axiomatic theory. This may be accom-
plished by

(i) including among the formation rules for formulas of the theory the
following :

If A and B are formulas, then so is (A) -* (B),
If A is a formula, then so is -,(A);

(ii) adding to the axioms of the theory the three axiom schemas we have
chosen for the statement calculus (where "formula" is now taken in the
extended sense of "formula of the theory");

(iii) adding modus ponens to the rules of inference.

Formulas of the theory may then be regarded as formulas of a statement calculus
in which the role of the statement letters is played by those formulas which are
not of the form (A) -4 (B) or --, (A) (that is, formulas which cannot be de-
composed into further formulas using --+ and --, in the way shown).

As a result of the imbedding, every tautology will be a theorem of the theory.
More important, the statement calculus is available as a theory of inference.
This theory is adequate to provide the logical skeleton of various kinds of proofs
that are encountered frequently. A few examples follow.

(a) To establish that a formula B of a theory in which the statement calculus
is imbedded is a theorem, it is sufficient to prove that -1 B -* -,A and A
are theorems. This procedure is justified by the fifth instance of Theorem
2.5 in Example 2.1. Similarly the rule -, B --> -,A I- A -' B justifies a
proof by contraposition.

(b) Let us use "C" to denote a contradiction. In formal terms, the proof of a
formula A by contradiction may be stated as

If -1 AF- C,thenI- A.
This rule stems from the tautology (-, A -)- C) --j A. In practice, such a
proof may take the following form. One shows that -, A F- B and H -1 B
and infers that -, A I-- B A -, B, and then F- A.

(c) To establish that a conditional A -* B is a theorem with a proof by con-
tradiction, the following rule is often used:

If A, -, B I- C (a contradiction), then l- A -' B.
The reader may justify this.
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(d) A "proof by cases" is not uncommon in mathematics. Such a proof of a
formula B begins with the enumeration of a finite set A,, A2, , A,,, of
formulas which are exhaustive in the sense that I- A, V A2 V V Am.
Then proofs of At -+ B, A2 - B, , A,,, -4 B are provided and it is con-
cluded that B is a theorem. The rule at hand is

If I- At V A2 V V Am, H A, -+ B, , !- Am_, -+ B,
and H A. -- B, then I- B.

Upon combining Theorem 2.5 and the Corollary to Theorem 4.4.1
we obtain

THEOREM 2.6. A,, A2, , A. l B iff A,, A2, , A. I- B.

As the reader may verify, the implication

(1) IfA,,A2, ,Amt= B, then A,, A2, A. F- B,

which is included in the theorem is equivalent to the completeness
theorem. We wish to show that (1) can be extended to

(2) For any set r of formulas, if r K B, then r I- B,
which is known as the strong completeness theorem for the statement
calculus. We begin with some definitions. A set r of formulas of the
statement calculus is called inconsistent if for some formula B we
can deduce both B and -1 B (and, hence, B A -i B) from r. If r
is not inconsistent, then it is called consistent. We extend a definition
given in Section 4.5 by calling any set r of formulas (simultaneously)
satisfiable if there exists truth-value assignments to the statement
variables such that each member of r receives truth value T. In
more detail, a truth-value assignment to the formulas of the state-
ment calculus is simply a mapping v on the set of formulas onto
IT, F} such that (i) for each formula A, v(-,A) is T or F according as
v(A) is F or T, and (ii) v(A --- B) = F if v(A) = T and v(B) = F.
Then r is simultaneously satisfiable if there exists a v satisfying (i), (ii),
and (iii) for all A in r, v(A) = T.t For the case where r consists of
a single formula A, satisfiability and validity are connected by

(3) K A iff ( -i A } is not satisfiable,

and provability and consistency are connected by
t The same description of a truth-value assignment may also be used to clarify the meaning

of the notation "t B" used in (2) above.
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(4) JA) is consistent if not H -, A.
Using (3) and (4), it is easily shown that the completeness theorem
is equivalent to

(5) Every consistent formula is satisfiable.

In a similar manner we shall prove that the strong completeness
theorem (2) is equivalent to

(6) Every consistent set of formulas is simultaneously satisfiable.

Further, we shall provide a proof of (6), and thereby (2) will be
established.

In order to prove the equivalence of (2) and (6), we shall need the
following generalizations of (3) and (4).

(7) r K A if r u { A } is not simultaneously satisfiable.

(8) If r is consistent and cc r, then not r F- -, C.

To prove (7), assume first that not r K A. Then there exists a truth-
value assignment v such that v(C) = T for each C in r and v(A) = F.
Then it is clear that v demonstrates that r u I-, A} is simultaneously
satisfiable: For the converse, assume that r K A. If r is a consistent set
of formulas, then for each truth-value assignment such that every mem-
ber of r takes the value T, A also takes the value T, and hence r u { -, A)
is not simultaneously satisfiable. If r is inconsistent, then it is not
simultaneously satisfiable (for this the reader is asked to either sup-
ply a proof or look ahead to the proof of Theorem 6.1) and, trivially,
IF U { -, A } is not simultaneously satisfiable.

The proof of (8) is left as an exercise. We continue by proving the
equivalence of (2) and (6). Assume that (2) holds and let r be a con-
sistent set of formulas. If c E r, then, by (8), not r I- -1 C. Hence, by
(2), not r K -, C. From (7) it then follows that r u { -, , c) = r is
simultaneously satisfiable. For the converse, we assume that (6) holds
and that r r-: B. Then (7) implies that. r u { -, B) is not simultaneously
satisfiable, so that, by (6), r u { B} is inconsistent, whence r F- B.

Finally, to complete our objective we prove (6). This is our next
theorem.

THEOREM 2.7. If r is a consistent set of formulas of the state-
ment calculus, then r is simultaneously satisfiable.
Proof. Since the primitive symbols of our system are denumerable,
and its formulas are certain strings of primitive symbols, it is possible
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to enumerate the formulas. Let some enumeration be given, so that
we may speak of "the first formula," "the second formula," and so
on, referring to this enumeration of the formulas. We shall use this
enumeration to derive from r a maximal consistent set of formulas,
that is, a set I' such that r is consistent and, if A is any formula such
that r U {A} is consistent, then A E P.

Given r, we define an infinite sequence Po, P,, r2, as follows:
Po = P and, if the (n + 1) th formula is A, then r.+, = Pn U { A) if
this is a consistent set. Otherwise r, = P,,. It follows by induction
that Po, Ti, P2, . - are consistent sets, since Po is consistent. Let r be
the union of the sets Po, P,, P2, . Then P is a consistent set. For
the contrary assumption implies the inconsistency of some finite subset
of r and hence that of some P;, contrary to what was observed above.

Moreover, r is a maximal consistent set. For let A be any formula
such that r U JA) is consistent. Say that A is the (n + 1) th formula.
The consistency of r U {A} implies that r. u {A} is a consistent set.
Hence, by the definition of r.+,, A is a member of Pn+, and hence a
member of P.

We list next five consequences of the maximal consistency of P.

(i) AEPifTI- A.
(ii) If B is any formula, then exactly one of the pair B, -, B is in P;
(iii) If B E P, then A -' B C P for any formula A.
(iv) If A a P, then A -* B E P for any formula B.
(v) IfAEPandBFQP,thenA - BvP.

To prove (i), let us assume first that A E P. Then P I- A since A I- A,
For the converse, assume that r I- A. This means that Ti I- A for
some finite subset Ti of P. Then the set r U { A } is consistent. For
the contrary assumption implies that there exists a finite subset F2
of r and a formula B such that P2, A I- B A -, B. But then P,,
P2 I- B A -, B, which contradicts the consistency of P. Finally, the
maximal consistency of P implies that A E P. The proofs of (ii)-(v)
are left as exercises.

Now consider the mapping v on the set of formulas onto IT, F}
such that

v(A) = IT ifAEP,
lF ifAvP.

This qualifies as a truth-value assignment since v(-, A) is T or F
according as v(A) is F or T in view of (ii) above, and v(A --' B) = F
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if v(A) = T and v(B) = F in view of (iii)-(v). Thus 1, and con-
sequently the subset r of r, is simultar.eously satisfiable.

EXERCISES
2.1. Complete the proof of Theorem 2.1.
2.2. Prove Theorem 2.2.
2.3. Provide a proof of each of the following formulas of the statement cal-

culus (where A and B are any formulas).

(a) -,A -(A -- B). (d) (A - B) --> (-1B - -,A).
(b) (e) B-' (--C --. (B C)).
(c) A - -1 A. (f) (B --' A) -' ((-, B - A) --+ A).

2.4. The theorem "If a and b are numbers such that ab = 0, then a = 0 or
b = 0" is usually proved by assuming that ab = 0 and a ; 0 and deducing
that b = 0. Show how to obtain a formal proof from such an informal argument.

2.5. Show that the completeness theorem is equivalent to proposition (5).
2.6. Prove proposition (8).
2.7. Referring to the proof of Theorem 2.7, show that I' has properties

(ii)-(v).
2.8. Referring again to the proof of Theorem 2.7, it should be clear that the

possibility of proving by induction the existence of a maximal consistent set of
formulas which includes a given consistent set rests with the assumption that
the set of statement variables is denumerable. Discarding this assumption-
that is, admitting the possibility of an uncountable set of statement letters-
prove the existence of a maximal consistent set which includes a given consistent
set of formulas using Zorn's lemma.

3. Predicate Calculi of First Order as Formal
Axiomatic Theories

. Predicate logic of first order, in addition to having notations of the
statement calculus, also has individual variables (and, possibly, indi-
vidual constants), quantifiers, and predicate variables or predicate con-
stants. Statement variables are not necessarily included, but there must
.be a complete set of connectives for the statement calculus. Various
different predicate calculi of first order are distinguished according to
just which of these notations are introduced. In this section we shall
present a particular formulation of each of the predicate calculi of
first order. By being sufficiently ambiguous, they can be treated simul-
Eaneously without confusion. Later, certain of these will be assigned
special names. Where it is unnecessary to distinguish the va:ious predi-
cate calculi, we speak simply of "the predicate calculus of first order."
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The axiomatization of the predicate calculus of first order which we
present is taken from Church (1956). The axioms and rules of inference
are essentially those in Russell (1908) but with Russell's axioms for the
statement calculus replaced by (PCi)-(PC3) of Section 2. The primitive
symbols are

and certain sets of symbols as follows.

(i) Individual symbols, some of which are classed as variables
and others of which may be classified as constants. The set of
variables must be infinite.

(ii) Statement symbols, some of which may be classed as variables
and the others as constants.

(iii) For each positive integer n, a set of n-place predicate symbols,
some of which may be classed as variables and the others as
constants.

Formula is defined inductively as follows.

(I) If P is an n-place predicate symbol and x1, x2, , xn are indi-
vidual symbols, then P(xi, x2, xn) is a formula. (Such a
formula is called prime.)

(II) If A and B are formulas, then so is (A) -+ (B).
(III) If A is a formula, then so is -, (A).
(IV) If A is a formula and x is an individual variable, then (x)A is

a formula.
(V) Only strings of primitive symbols are formulas. A string is a

formula only if it is the last line of a column of strings, each
either a prime formula or obtained from earlier strings by
(II)-(IV).

As in part (I) of the definition of formula, we shall use lower-case
letters, with or without subscripts, from the latter part of the alphabet,
for individual variables and, as in parts (II)-(IV) of the same defi-
nition, we shall use capital English letters from the first part of tlis
alphabet for arbitrary formulas. It can be proved that the notion at,
formula is effective. We make the same conventions regarding the omiss
sion of parentheses when writing formulas, and introduce the same abb
breviations for certain formulas as in the statement calculus. Further.
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we introduce (3x)A as an abbreviation for -t (x) -i A. Any occurrence
of the variable x in the formula (x)A is called bound. Any occurrence
of a symbol which is not a bound occurrence of an individual variable
according to this convention is called free. The valuation procedure
of Section 4.8, with the following modification is applicable to formulas:
The statement constants arc to denote one of the truth values T or F
and the statement variables are to have IT, F) as their range. An
individual constant (like an individual variable with a free occurrence
in a formula) is assigned a value in the domain under consideration and
to a predicate constant is assigned a particular logical function. As
earlier, the valuation procedure leads to the notion of a valid formula.

The axioms for the predicate calculus are given by the axiom schemas
(PC1)-(PC3) of the statement calculus, with "A," "B," and "C" now
ranging over formulas of the new theory plus at least the following two
schemas.

(PC4) (x)(A -+ B) -p (A --> (x)B), where x is an individual vari-
able with no free occurrences in A.

(PC5) (x)A -+ B, where x is any individual variable, y any indi-
vidual symbol, and B is obtained by substituting y for each free
occurrence of x in A, provided that no free occurrence of x is in a
part of A that is a formula of the form (y)C.

With the applications in mind, it is desirable to include the possibility
that there is present in the predicate calculus of first order the formal
analogue of the notion of equality. As it is intuitively understood,
"x = y" means that x and y are the same object or that "x" and "y"
are the names of the same object. For mathematical purposes, all that
is required of equality is that (i) it be an equivalence relation, and (ii)
it have the following substitution property: If x = y and B is the result
of replacing one or more occurrences of "x" in a statement A by occur-
rences of '!y," then B has the same meaning as A. Now the properties
of symmetry and transitivity can be derived from those of reflexivity
and substitution. We take this into account in defining a predicate
calculus of first order with equality. Such a predicate calculus is one of
the sort described thus far with the addition of (i) the 2-place predicate
.Constant "_" to the formal symbols, (ii) the clause, "if x and y are
individual symbols, then (x = y) is a formula" to the definition of
formula, and (iii) the following axiom schemas.
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(PC6) If x is an individual symbol, then x = x.
(PC7) If x and y are individual symbols, and A is a formula, then

(x = y) -+ (A - B), where B is obtained from A by replacing some
free occurrence of x by a free occurrence of y.

When it is necessary to distinguish between a predicate calculus with
equality and one in which there is no 2-place predicate constant satis.
fying (PC6) and (PC7), the latter will be called a "predicate calculus
without equality."

For the predicate calculus of first order there are two formal rules of
inference.

Modus ponens: To infer B from any pair of formulas A, A -a B.
Generalization: To infer (x)A from A, where x is any individual

variable.
A (formal) proof is a finite column of formulas, each of whose lineq

is either an axiom or may be inferred from two preceding lines by modus
ponens or may be inferred from a single preceding line by generalize-
tion. As in the statement calculus, a (formal) theorem is a formula
which occurs as the last line of some formal proof. Again we shall
symbolize the assertion that A is a theorem by

I-A.

In order to extend the earlier definition of a deduction from a set Q
assumption formulas to the predicate calculus, we make an auxiliary
definition. A column Y of formulas is called a subcolumn of the coQ
umn X of formulas if the formulas of Y appear among those of X
the same order which they have in Y. Then, if r is a set of formula1
and A is a formula, we define D(r, A) to be the set of those finite col
umns X of formulas whose last line is A such that each line of X is eitl 1
an axiom or an element of r, or else may be inferred from two preceding
lines by modus ponens, or may be inferred from a preceding line

Aof X by generalization on any variable-provided that B is the last
line of a subcolumn of X which is a formal proof. If, for given r and
A, D(r, A) is nonempty, then A is said to be deducible from assumpp
tions r, symbolized

and a member of D(r, A) is called a (formal) demonstration of
from r.

Basic properties of deducibility include the six listed in Section. 1i
(prior to Theorem 2.1) for the same notion at the statement calculul
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level. Furthermore, the earlier deduction theorem can be extended to
the predicate calculus. This general form, which we establish next, was
first proved by J. Herbrand (1930).

THEOREM 3.1 (the deduction theorem for the predicate calculus).
If P is a set of formulas and A and B are formulas, then

r, A I- B implies I' I- A -, B.

Proof. The proof is that given for Theorem 2.1, with the following
additional case inserted after Case 3.

Case 4. If Ci is inferred from an earlier line C; of X by general-
ization on some variable and C; is the last line of a subcolumn Z of X
which is a formal proof (and, if the preceding cases do not hold), let
Yi be the column (Z, Ci, Ci -' (A -' Ci), A ---> Q.

Of course the presence of this case necessitates an extension of the
final step of the earlier proof-namely, the proof by induction that
each Yi is a member of D(r, A -> Ci).

Using Theorem 3.1 we derive next another property of deducibility.
For this we first define inductively the conjunction, ATM, of any string
A1, A2, , A. of formulas :

/ \1Ai is A1; Ai+'Ai is Ai+1 A A4AA, j = 1, 2, , m - 1.

LEMMA 3.1. A1, A2, ,AmI-BiffF-/\,Ai-4 B.
Proof. Hints for constructing a proof are given in Exercise 3.1.

We use this lemma to prove the following important result.

THEOREM 3.2. If r F- A and x is an individual variable not free
in any formula of r, then r F- (x)A.

Proof. Assume that I' I- A and that x is a variable not free in
any formula of F. By property (vi) of deducibility (Section 2)
there exists a finite subset Pl = {AL, A2, , Am} of P such that
41, A2, , A. F- A. Then Al, Ai - A is a formal theorem by Lemma
3.1. Let X be a proof of this theorem. Since x is not free in /\1mA;,
the column

X /x)(ArAi --) A)
(x)(A Ai -a A) --a (MA i -+ (x) A)
NnAi - (x)A
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is easily seen to be a formal proof. Hence, by Lemma 3.1, rt I- (x)A
and, in turn, by property (iv) of deducibility, r I- (x)A, as required.

We interrupt our discussion at this point to note that our presentation
of the notion of deducibility ha§ been taken from R. Montague and
L. Henkin (1956). Apparently their development was motivated by the
observation that one of the standard definitions of D(r, A) in the
literature fails to satisfy property (iv) of deducibility. In this paper the
following further result is obtained. Suppose that I-i and 1-s are rela-
tions, each satisfying the conditions (ii)-(vi) plus the two conditions of
Theorems 3.1 and 3.2. Then r I- t A if r 1- s A for each formula A and
each set of formulas. Thereby the relation I- is characterized by this
set of seven conditions.

As another aspect of the notion of deducibility we note that if A(x)
is a formula in which the variable x has a free occurrence, then in a
demonstration which involves A(x) as an assumption formula, one is
not permitted to generalize on this x. That is, x is treated as a constant.
Intuitively we may say that a free occurrence of a variable in an as-
sumption formula is employed to denote an arbitrary but fixed indi-
vidual. In informal mathematics, when a variable x is employed in
this way, one says that x has the conditional interpretation. In con-
trast, if x has a free occurrence in a formula A (x) which is an axiom of
the theory under consideration, then A(x) is intended to mean the same
as (x)A(x). In this circumstance one says that x has the generality-
interpretation. If A is any formula and its free variables in order of
first free occurrence are xt, x2, , xn, then by the closuret of A we mean
the formula (X1) (X2) . (xn)A, sometimes abbreviated

VA.

Under the generality interpretation of free variables, A and VA are
synonymous.

The deduction theorem can be extended so as to give the generality
interpretation to some or all of the variables having free occurrences in
one or more assumption formulas. For example, there is the following
result : If r, A 1- B, then r H VA -' B. For proof, assume that r, A I- B,
Now VA I- A by repeated use (possibly) of (PC5) together with modus
ponens. So, by the property of deducibility stated in Exercise 3.2 (b),
r, VA I- B. Hence, by Theorem 3.1, r i- VA -' B.

f In harmony with the definition of closure,. a formula containing no free variables, that
is a statement according to an earlier definition, is often called a closed formula.
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The reduction of the notion of deducibility to that of provability in
the case of the predicate calculus can be shown in a manner parallel to
the corresponding reduction in the statement calculus, since the corollary
to Theorem 2.1 and Theorem 2.2 carry over to the predicate calculus.
Or, more simply, Lemma 3.1 may be called upon. It follows that if we
can show that K A if F- A, we will have demonstrated the equivalence
of the informal and the formal predicate calculus, both by themselves
and when applied under a set of assumption formulas. As in the state-
ment calculus, the proof is easy in one direction.

THEOREM 3.3. If F A in the predicate calculus, then t-- A.

Proof. As in the proof of the corresponding assertion for the statement
calculus (Theorem 2.4), we observe first that the assertion is true for
each instance of each axiom schema. In this connection, Theorem
4.8.1 is pertinent. Further, by virtue of Theorem 4.3.3 (extended to
the predicate calculus) and Theorem 4.8.2, if C is any theorem which
has been obtained from a theorem B by application of a rule of
inference, and i B, then C is valid. Hence, if any formula A is a
theorem, then A is valid.

The converse of this result is a consequence of a theorem first proved
by K. G6del (1930). Although it is not his most celebrated theorem, it
is a remarkable result. We state it as the next theorem. A proof is given
in Section 6.

THEOREM 3.4 (G6del's completeness theorem for the predicate
calculus). For each formula A in the predicate calculus, if iz A,
thenF- A.

We conclude this section with an assignment of names to certain
predicate calculi of first order. The pure predicate calculus of first
order is that in which the primitive symbols include an infinite list of
statement variables and, for each positive integer n, an infinite list
of n-place predicate variables, but no statement constants, no individual
constants, and no predicate constants. A predicate calculus of first
order in which at least one kind of constant appears is called an applied
predicate calculus of first order.

EXERCISES

3.1. Prove Lemma 3.1 by induction. In the inductive step the following
tautologies are useful:
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(A'i A; -> (Al+i -+ B)) - (A{+1 A; -- B),
(1V' B) -' (IV, A: -' (Ai+l - B)).

3.2. Establish the following additional properties of the relation I- .

(a) If A is a formal theorem and r is any set of formulas, then r I- A.
(b) If t I- A and if A I- B for every formula B in t, then A I- A.

3.3. Show that the ordering of lines in a formal proof can be avoided, by
proving that the theorems of the predicate calculus constitute the smallest set
of formulas containing certain formulas and closed under certain operations.

4. First-order Axiomatic Theories
A first-order theory (or, a theory with standard formalization) is,

a formal theory for which the predicate calculus of first order suffices as
the logical basis. Those with which we shall be concerned are also
axiomatic theories.

An intuitive understanding of the essence of such theories is desirable
before technical details are discussed. As our starting point for this we
take the description in Section 5.3 of an informal theory as one whose
primitive notions consist of a set X, certain of its members (individuals)
and certain subsets of X" for various choices of n (primitive relations
and operations in X). Now, in place of relations or operations in X,
predicates may be used. For example, in place of an n-ary relation p
in X we may introduce the n-place predicate P such that a (prime)
formula P(xi, xs, , is assigned the value T for an assignment of u
in X to x;, i = 1 , 2, , n, iff (u,, uz, , un) E p. In place of an n-ary
operation in X (that is, a function f on Xn into X) we may introduce
the (n + 1)-place predicate Q such that a formula Q(xi, x2, - -, xn+1) is
assigned the value T for an assignment of u; in X to x; iff f (x,, x2, , xR)
= xn+1.

It is possible (as we shall show) to cope with n-ary operations in a
more natural manner by introducing a further class of primitives, called
"operation symbols" ; these are the direct formal analogues of functions
whose domain is X". Now, with a specific informal theory in mind,
suppose we formulate the applied predicate calculus whose individual
symbols are variables and a set of constants in one-to-one correspondence
with those individuals of Xwhich are primitive and whose only predicate
symbols are constants which, in an interpretation having X as domain',
denote the primitive relations and operations in X. (Alternatively,
operation symbols may be used in place of predicates which are intended'
to denote operations in X.) Finally, as axioms we take the axiom
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schemas of the predicate calculus with equality together with the for-
malixations of those (mathematical) axioms of the informal theory. As
rules of inference we take those of the predicate calculus. The result is a
first-order axiomatic theory!

We now turn to a precise description of a first-order theory Z. The
primitive symbols are the following.

(I8) An infinite sequence of individual variables, ao, a,, a2, .

(II.) A set of logical constants consisting of

(a) the logical symbols of the predicate calculus, parentheses,
and a comma,

(b) the equality symbol

(III.) A set of mathematical constants consisting of

(a) a set of individual constants,
(b) for each positive integer n, a set of n-place predicate (or rela-

tion) symbols,
(c) for each positive integer n, a set of n-place operation sym-

bols.

The equality symbol, although regarded as a logical constant, is included
in the set of 2-place predicate symbols. Statement symbols may also be
included; any such may be regarded as 0-place predicate symbols. In
this same spirit, individual constants may be regarded as 0-place opera-
tion symbols.

The description of Z further includes the definition of a term. This
is given inductively as follows.

(Ii) An individual variable and an individual constant are each
terms.

(III) If r,, r2, r are terms and A is an n-place operation symbol,
then A(r1, r2, , is a term.

(III,) The only terms are those given by (Q and (III).

Although some repetition is involved we give an inductive definition
of formula.

(If) If A is an n-place relation symbol and r1, r2, , r, are terms,
then A(rl, r2, , is a formula. (Such a formula is called
prime.) In particular, if r and s are terms, then (r = s) is a
prime formula.
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(II f) If A and B are formulas, then so are -t (A), and (A) -' (B).
(111t) If A is a formula and x is a variable, t then (x)A is a formula.
(lVf) Only strings of primitive symbols are formulas. A string is a

formula only if it is the last line of a column of strings, each
either a prime formula or obtained from earlier strings by
(IIf) or (III f).

We carry over to Z all of the abbreviations, conventions, and defini-
tions employed in the predicate calculus. Further, (r = s) will be ab-
breviated to r = s and -t (r = s) to r s. The only part of the foregoing
for which we did not prepare the reader is the notion of a term. Under
the intended interpretation, a term is the name of an object of the
domain, that is, an individual. In addition to variables and individual
constants being terms, strings composed from variables and individual
constants using operation symbols should be terms, since in the intended
interpretation they denote function values.

The theory Z becomes an axiomatic theory when the axioms are
given and provability is defined. The axioms are of two kinds, logical
and mathematical. As the logical axioms for % we take all instances
of the axiom schemas for the predicate calculus of first order with
equality, with the following modifications. We now permit as the "y
of (PC5) any term r such that when it is substituted for (the free occur-
rences of) x in A, no occurrence of a variable in r becomes a bound
occurrence. As the mathematical axioms we select some set of closed
formulas (that is, statements) of St; these axioms are intended to provide
the mathematical content of the theory. As rules of inference we take
those of the predicate calculus of first order. The definitions of provabil-
ity and deducibility remain unchanged from the predicate calculus but
these notions are strengthened by the added mathematical axioms.

EXAMPLES
4.1. The formulation of group theory given in Exercise 5.4.15 leads to the

following description as a first-order axiomatic theory. To the logical constants
(including the equality symbol) we adjoin one individual constant e and one
2-place operation symbol - The terms of the theory are defined as follows:
Each variable and each constant is a term, and if r and s are terms, then r
is a term. The formulas of the theory are those as defined in a predicate calculus;
plus (r = s), where r and s are terms. The mathematical axioms are

f Generally we shall use letters "x," "y," as (metamathcmatical) variables which range
over the variables of the theory under discussion.
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(x) (y) (z) (x 0 z) = (x y) z),
(x) (e x = x),
(x) (3,v) (y x = e).

Alternatively, if we start with the formulation which is implicit in Exercise 5.2.7,
we are led to the following description. The only mathematical constant is a
binary operation symbol , and the mathematical axioms are

(x) (y) (z) (x . (y z) = (x . y) z),
(x) (y) (3z) (x = y z),
(x)(z)(3y)(x = y z) -

Each of the foregoing is a formulation of the elementary theory of groups.
The word "elementary" signals that the first-order predicate calculus is the
system of logic employed and that theorems of the theory are restricted to those
which can be expressed by first-order formulas. Not all of group theory, as a
mathematician knows this discipline, can be formalized by the elementary
theory of groups. The state of affairs is that in any first-order theory one can
quantify only with individual variables, and this is inadequate to formalize
certain theorems.

4.2. We shall call the arithmetic of the system of natural numbers, when
formalized as a first-order theory, elementary number theory, and symbolize
it by N. One version (based on Peano's axioms) is the following. The mathe-
matical constants consist of the individual constant 0, two 2-place operation
symbols + and -, and the 1-place operation symbol'. The mathematical axioms
consist of the following six axioms and one axiom schema.

(x)(y)(x = y'-, x = y),
(x) (x + 0 = x),
(x)(x 0 = 0),

(X) (X ,96 0),

(x) (y) (x + y' = (x + y)'),
(x) (y) (x . y' = x - y + x),
A(0) A (x)(A(x) -, A(x')) --> A(x),

where x is any variable, A(x) is any formula, and A(0), A(x') are the results of
substituting 0, x' respectively for the free occurrences of x in A(x).

The intended interpretation of the mathematical constants is the obvious one.
It is intended that 0 be the integer zero, that x' be the successor of x, that x + y
be the sum of x and y, and that x y be their product. The axiom schema ex-
presses the principle of mathematical induction to the extent possible in a first-
Order theory.

4.3. Since we have assumed that the equality relation is incorporated in a
first-order theory, it is possible to replace an n-ary operation symbol in such a
theory by an (n + 1)-ary relation symbol. The following example indicates how
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this can be done. Suppose that + is a 2-place operation symbol in a first-order
theory Z. This may be replaced by the 3-place relation symbol S [where
S(x, y, z) is to be read "z is the sum of x and y"] and the inclusion of the axioms

(x) (Y) (3z)S(x, y, z),
(x) (y) (z) (u) (S(x, y, z). A S(x, y, u) - z = u),

which express the existence and uniqueness, respectively, of the sum of any
two elements. Thus, for theoretical considerations, we may assume that no
operation symbols are present in a first-order theory.

In a similar manner, individual constants may be eliminated from a first,
order theory. For example, to eliminate the individual constant c, we introduce
a new unary relation symbol C and the axioms

(3x)C(x),
(x) (y) (C(x) A C(y) -'' x = y)

When operation symbols and individual constants are eliminated from a theory,
it is necessary to modify formulas in which they appear in an appropriate way.
For example, A(c) becomes

(x)(C(x) --+ A(x)).

4.4. The agreement that the mathematical axioms of a first-order theory
be closed formulas (rather than simply formulas) may seem to entail some loss
of generality. That this is not the case is an immediate consequence of the follow,
ing result: A formula A of Z is a theorem if its closure is a theorem. Indeed, if
A is a theorem, then generalization on each variable, in turn, which is free in A,
yields VA as a theorem. Conversely, if VA is a theorem, then any universal
quantifier in front of A can be removed, using (PC5).

4.5. The deduction theorem of the predicate calculus of first-order and its
converse have the following application to first-order theories: If r is a set of
formulas of and A,, A2, , A. are formulas of Z, then a formula B is de-
ducible from r u (A,, A2, , Am) if r F- M A; --' B. In particular, B is a
theorem of T (that is, deducible from the set A of logical axioms and the set of
mathematical axioms) if B is deducible from A alone or there exist mathemat,
ical axioms A,, A2, , A. such that A F- / l A; -+ B.

The last fact, taken together with the definition of deducibility, implies that
a formula B is a theorem of Z if B is deducible from the set of mathematical
axioms (as a set of assumption formulas) in the theory ', which coincides with
T except that its axioms are just the logical axioms of Z. In this way the in,
vestigation of various properties of first-order theories can be reduced to that of
theories having a common set of axioms-to wit, those of the predicate calculus
with equality. We shall take advantage of this possibility later.

For first-order theories it is assumed that the mathematical constants
have an interpretation in some nonempty domain D. Roughly, this
means that each individual constant is interpreted as denoting a fixed
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member of D, that each individual variable has D as its range, that
,,-place relation symbols have interpretations as subsets of D", and that

p-place operation symbols have interpretations as functions on D" into D.
We turn now to a detailed description of this, along with a valuation
procedure (which extends that given in Section 4.8).

As the starting point for the valuation procedure for a first-order
theory we assume that all mathematical constants of Z can be ar-
ranged without repetition in an a-termed sequence (Co, C1, , C )
for some ordinal a. f Let D be a nonempty set and let (eo, et, , is,, )

be a sequence which has the same number of terms as the foregoing
sequence.

The nature of each e, depends on the nature of the corre-
sponding constant C,. If C, is an m-place relation symbol, then e, is a
subset of Dm; if C, is an m-place operation symbol, then e, is a function
on Dm into D; if, finally, C, is an individual constant, then G, is an
element of D. The sequence

z _ (D) eo) Gt, ... a,. ... )
is called an interpretation of Z having D as its domain: this is a pre-
cise version of the definition of the same notion given in Section 5.2.

If Z is an interpretation of T with domain D, we wish to de-
fine next the circumstances under which a (denumerable) sequence
(do, dt, , d,,, ) with d; C D, in brief, a D-sequence is said to
satisfy a formula A (of T-) in D . For this we need a preliminary concept.
To each D-sequence d = (do, dt, , dR, ) and each term r we as-
sociate an element r(d) of D by the following recursive rule.

(i) If r is the individual variable at, then r(d) = dk.
(ii) If r is the individual constant C;, then r(d) = e,.

(iii) If r is the term C;(ri, r2, -, where C; is an n-place operation
symbol and ri, r2, , r,, are terms, then

r(d) = e,(rt(d), rs(d), ..., r.(3)).
The element r(d) of D is called the value of the term r f o r the D-se-
quence W. Using this concept, f o r each D-sequence d = (do, dl, , d,,, )
and each formula A we specify whether or not d satisfies A by the
following recursive rule.

(I,) If A is a prime formula C;(ri, r2, , r,), where C; is an
n-place relation symbol and rt, r2, , r,, are terms, then
satisfies A if (ri(d), r2(d), , r,,(d)) C e;.

t The reader who is not familiar with the notion of an ordinal number may assume, with
little loss of generality, that the set of mathematical constants is countable.
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(II.) If A is a prime formula r = s, where r and s are terms,
then d satisfies A if r(d) is the same element of D as s(d).

(III.) If A is -, B, then d satisfies A if d does not satisfy B.
(IV.) If A is B -> C, then d satisfies A if d satisfies C or satisfies

neither B nor C.
(V.) If A is (ak)B, then d satisfies A if for every d C D we have

that (do, , d,-,, d, dk+,, ) satisfies B.

As an illustration of the definition, we apply it to show that if C, is a
unary operation symbol and C2 is a binary relation symbol, then for
any D, a D-sequenced satisfies

(1) (3a3)C2(as, Cias)

if there exists a d C D such that (d2, eld) C C2. The reader should
justify each of our steps. In unabbreviated form, (1) is
(2) -1 (a3) C2(a2, C,a3).

Then (do, d,, d2, , d,,, ) satisfies (1) if it does not satisfy
(a3) -, C2(as, Cia3). This means there exists d C D such that

(do, d,, d2j d, dg, ... )

does not satisfy -,C2(a2, C,a3), and hence satisfies C2(a2, Cia3). Thus
(d2, e,d) C e2.

The proof of the following theorem is left as an exercise for the reader.

THEOREM 4.1. Ifd = (do,d,, d,,, )and
d' _ (do, d i, ... , dn, ... )

are D-scquences and if A is any formula such that for every variable
ak with free occurrences in A, dk = d1ei then d satisfies A iff d' satisfies A.

From this theorem it follows that if A is a statement, its satisfaction
by a D-sequence does not depend on any element of the sequence;
that is, a statement either is satisfied by every D-sequence or by no
D-sequence. We shall call a formula true in an interpretation `.J with
domain D if it is satisfied by every D-sequence. If A is a statement,
then either A is true in `.D or --A is true in Z. If A is true in `D, then we
shall say that Z is a model of A. A formula which contains free variables
is true in `.J if its closure is true in Z. It follows that the set of all for-
mulas of which are true in `.J is characterized by the statements which
it contains. This accounts for the fact that statements occupy a central
role in the study of first-order tlicories (and those theories introduced
in the next section).
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The foregoing amounts essentially to nothing more than an alterna-
tive description of the earlier valuation procedure for the predicate
calculus- t Agreement with this statement will come as soon as it is
recognized that an interpretation `.J with domain D of a theory X
includes the equivalent of an assignment of logical functions (relative to
D as domain) to the predicate symbols of Z. The circumstances under
which a formula A of $ is classified is true in l is a slight extension of
those under which a formula receives truth value T relative to some
assignment of logical functions.

Having made contact with the earlier valuation procedure, we shall
take over some of the terminology introduced in Sections 4.8 and 4.9.
If D is a nonempty set and A is a formula of T, then we shall say that
A is valid in D if it is true in every interpretation with D as domain;
A is valid, symbolized

f= A,

if it is valid in every D. Further, a formula A is said to be a conse-
quence of a set r of formulas, symbolized

F i A,

if for every interpretation D and every D-sequence 7 such that I
satisfies each formula of r, we also have that d satisfies A. t In the case
where all formulas are statements, r t= A if A is true in every interpreta-
tion in which each member of r is true. If we understand by a model
of a set r of formulas an interpretation which is a model of each member
of r, then r K A if every model of r is a model of A.

EXERCISES
4.1. Formulate the theory of simply ordered commutative groups (see the

Exercises for Section 5.3) as a first-order theory.
4.2. Prove Theorem 4.1.

5. Metamathematics

The principal reason for formulating intuitive theories as formal
axiomatic theories and, in particular, as first-order theories, is that such
fundamental notions as consistency and completeness can be discussed
in a precise and definitive way. This is possible because the notion of

t The justification for presenting two descriptions of a valuation procedure is the author's
belief that each is the natural one in the setting in which it finds application.

$ We note that a valid formula may be characterized as one which is a consequence of the
empty set of formulas.
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proof is made explicit. Before turning to theorems related to such mat-
ters it is desirable to have some understanding of how such matters are
studied and why such methods are used. In this section we shall describe
the admissible methods for the study of formal theories as advocated by
the school of formalists (founded by Hilbert) and then prove some
theorems in accordance with these methods.

A formal theory is a completely symbolic language built according
to certain rules from the alphabet of specified primitive symbols. When
a formal theory becomes the object of study it is called an object
language. To discuss it, which includes defining its syntax, specifying
its axioms and rules. of inference, and analyzing its properties, another
language-the metalanguage or syntax language-is employed. Our
choice of a metalanguage is the English language. In general terms the
contrast between a metalanguage and the object language which is
discussed in terms of this metalanguage is parallel to the contrast
between the English language and the French language for one whose
native tongue is English and who studies French. At the outset, vocab-
ulary, rules of syntax, and so on, are communicated in English (the
metalanguage). Later, one begins to write in French. That is, one forms
sentences within the object language. To give a concrete example,
consider the elementary theory of groups as formulated in the preceding
section. The statement "The elementary theory of groups is an un-
decidable theory" is about group theory and written in the English
language-that is, in the metalanguage. In contrast,

"(a) (b) (c) (a - b = a c --+ b = c)"

is a statement of group theory-that is, of the object language.
A theorem about a formal theory is called a metatheorem and is to be

distinguished from a theorem of the theory. It is easy to make this
distinction since a theorem of the theory is written in the symbolism of
the theory, whereas a metatheorem is written in English. In the preced-
ing paragraph the statement in English regarding group theory is a
metatheorem, and that written in terms of , =, and so on, is a theorem
of group theory. Since the proof of a metatheorem requires a system of
logic, a description of the system of logic should be available for the
prospective user of the metatheorem. One possibility is to formalize the
metalanguage as we have formalized the predicate calculus. But this
entails the use of a metametalanguage, and the beginning of an un-
ending regress is established. The alternative, which was proposed by
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Hilbert, may be summarized roughly : In the metalanguage employ an
informal system of logic whose principles are universally accepted.

More generally, Hilbert took the position that a metatheory (that is,
the study of a formal theory in the metalanguage selected) should have
the following form. First of all, it should belong to intuitive and in-
formal mathematics; thus, it is to be expressible in ordinary language
with mathematical symbols. Further, its theorems (that is, the meta-
theorems of the formal theory) must be understood and the deductions
must carry conviction. To help ensure the latter, all controversial prin-
ciples of reasoning such as the axiom of choice must not be used. Also,
the methods used in the metatheory should be restricted to those called
finitary by the formalists. This excludes consideration of infinite sets as
"completed entities" and requires that an existence proof provide an
effective procedure for constructing the object which is asserted to exist.
Mathematical induction is admissible as a finitary method of proof,
since a proof by induction of the statement "For all n, P(n)" shows that
any given natural number n has the property expressed by P by reason-
ing which uses only the numbers from 0 up to n; that is, induction does
not require one to introduce the classical completed infinity of the
natural numbers. Finally it is assumed that if, for example, the English
language is taken as the metalanguage, then only a minimal fragment
will be used. (The danger in permitting all of the English language to
be used is that one can derive within it the classical paradoxes, for
example, Russell's paradox.) By metamathematics or proof theory is
meant the study of formal theories using methods which fit into the
foregoing framework. In brief, metamathematics is the study of formal
theories by methods which should be convincing to everyone qualified
to engage in such activities.

Before discussing some metamathematical notions and proving some
metatheorems, we outline the reasons which led Hilbert to formulate
metamathematics as he did. The introduction of general set theory with
its abstractness. and its treatment of notions (such as the completed
infinite), which are inaccessible to experience, yet with its fruitful ap-
plications to concrete problems of classical mathematics, provided the
stimulus for investigations of the foundations of mathematics in the
sense that this subject matter is now known. The discovery of contra-
dictions within set theory served to strengthen and accelerate these
investigations. The initial reaction to the antinomies of intuitive set
theory was a reconstruction of set theory as an axiomatic theory, placing
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around the notion of set as few restrictions to exclude too large sets as
appear to be required to prevent the known antinomies (see Chapter 7).

Some felt that even if this venture should prove to be successful, it
would not provide a complete solution to the problem because, they
argued, the paradoxes raised questions about the nature of mathe.
matical proofs and criteria for distinguishing between correct and in-
correct proofs for which satisfactory answers had not been provided.
Russell, for example, judged the cause of the paradoxes to be that each
involves an impredicative procedure. t This led Russell to formulate a
system of logic (his ramified theory of type, 1908) in which impredicative
procedures are excluded and, with Whitehead, to attempt to develop
mathematics as a branch of logic (Principia Mathematica). Both the logistic
school and the advocates of the axiomatic approach to set theory,
initiated by E. Zermelo, were in need of proofs of the consistency of
their theories. It was recognized that the classical method of providing
a proof-the exhibition of a model within the framework of a theory
whose consistency was not in doubt-could not be applied. Further,
finite models were clearly inadequate, and no conceptual framework
within which an infinite model might be constructed could be regarded
as "safe" in view of the antinomies. It was Hilbert who contributed the
idea of making a direct attack upon the problem of consistency by
proving as a theorem about each such theory that contradictions could not
arise. Hilbert recognized that in order to carry out such a program,
theories would have to be formalized so that the definition of proof
would be entirely explicit. To this end he brought the notion of a formal
axiomatic theory to its present state of perfection. To prove theorems
about such theories-in particular, to attack the problem of consistency
-Hilbert devised metamathematics. By restricting the methods of proof
to be finitary in character, he hoped to establish the consistency of theo-
ries such as N with the same degree of impeachability as is provided by
proofs of consistency via finite models when the latter technique is
possible (as in group theory for instance).

So much for the raison d'etre of metamathematics. We shall anticipate
the results appearing in Section 10 by mentioning now the impossibility of
metamathematics fulfilling the role which Hilbert intended for it. This was

f A procedure is said to be impredicative if it provides a definition of a set A and a specific
object a such that (i) a C A and (ii) the definition of a depends on A. For example, the pro-
cedure which leads to Cantor's paradox, is impredicative: The collection a of all subsets of
the set A of all sets is both a member of A and depends upon A for its definition.
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established as a consequence of theorems proved by Godel (1931). The
specific circumstances were these. Hilbert's program slowly took form
during the period 1904-1920, and in the 1920's he and his co-workers
undertook its execution. Their initial goal was to prove the consistency
of elementary number theory. This was a natural objective in view of
the fundamental role of elementary number theory plus the possibility
of the reduction of other portions of classical mathematics to that of N,
via models (see Section 5.4). After some partial successes, the endeavor
came to a halt in 1931 with the demonstration by Godel of the im-
possibility of proving the consistency of any formal theory which includes
the formulas of N by constructive methods, "formalizable within the
theory itself." Regarding such methods, it suffices for the moment to
say that so far as is known, they incorporate all methods which Hilbert
was willing to permit in metamathematics. This state of affairs does not
foretell the doom of metamathematics but has served to indicate its
limitations. In what follows, we shall occasionally see methods of proof
which lie outside the domain of metamathematics. When this is done we
shall call attention to the fact.

For our first example of a metamathematical notion we choose con-
sistency. The definition in Section 5.4 (a theory is consistent iff for no
formula A both A and --1 A are provable) is applicable to any formal
theory having the symbol -i for negation. It is metamathematical since
it refers only to the formal symbol -i and the definitions of formula
and provability. A metatheorem concerning a class of theories to which
the definition is applicable is proved next.

THEOREM 5.1. Let Z be a formal theory which includes the
statement calculus. Then T is consistent if not every formula of Z
is a theorem.

Proof. Suppose that T is inconsistent and that A is a formula such
that both F- A and F- --1 A. Now A -+ (--I A -' B) is a theorem for
any B since it is a tautology. Hence B (that is, any formula) is a
theorem by two applications of modus ponens. For the converse,
assume that every formula of Z is a theorem. Then if A is any formula,
both A and --,A are theorems. Thus, Z is inconsistent.

Henceforth it will be assumed that all formal theories include the
statement calculus so that Theorem 5.1 will always hold. Our next
result is a metatheorem about the statement calculus.
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THEOREM 5.2 . The statement calculus is a consistent theory.

Proof. Let A be a theorem. Then, in turn, A is a tautology, -, A is
not a tautology, and -,A is not a theorem.

The foregoing is a metamathematical proof. To substantiate this
assertion we note first that the computation process for filling out a
truth table for a given formula (regarded as a truth function) is meta..
mathematical. Hence the property of being a tautology is a metamathe..
matical property of formulas of the statement calculus. It follows that
the proof of Theorem 2.4 (if A is a theorem, then A is a tautology) is
metamathematical. Since the proof in question relies solely on Theo-
rem 2.4, it also is metamathematical.

A similar chain of reasoning (now using Theorem 3.3) gives a proof
of the consistency of the predicate calculus as soon as a formula which is
not valid is exhibited. Although the valuation procedure on which the
proof of Theorem 3.3 depends is not effective in general, we apply it
relative to a fixed interpretation whose domain is finite. Under these
circumstances it is admissible in metamathematics, so the proof is meta,
mathematical. The idea behind the proof is the fact that an n-place
formula, with or without quantifiers, behaves like a statement in the
sense that it assumes either the value T or F, when valuated in a domain
of just one element. We begin the proof by defining for each formula A
the associated statement calculus formula (a.s.c.f.) as the formula
obtained from A by deleting all quantifiers, deleting all individual
variables, and treating the predicate variables as statement variables.
Now we observe that the a.s.c.f. of each axiom of the predicate cal.
culus is a tautology and that the two rules of inference preserve the
property of having a tautology as an a.s.c.f. Hence, a formula is prow;
able only if it has a tautology as its a.s.c.f. Consider now the formula
d1(a) A -i&'(a), where t' is a 1-place predicate variable and a is all
individual variable. Its a.s.c.f. is d' A -1d' and is not a tautology, and-
hence the original formula is not provable. An application of Theorem
5.1 completes the proof. We state this result as

THEOREM. 5.3 . The predicate calculus of first order is a consistent
theory.

Sometimes the notion of completeness, in the sense of one or more of
the definitions given in Section 5.4, may be treated in metamathematics.
For example, Theorem 2.3, which asserts the completeness of the state-
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ment calculus in a positive sense (as this was explained in Section 5.4),
belongs to metamathematics. On the other hand, Godel's completeness
theorem for the predicate calculus is outside the realm of metamathe-
matics. The statement calculus is also complete in a sense which exhibits
a negative approach to a sufficiency of theorems. The next result, which
belongs to metamathematics, is of this sort.

THEOREM 5.4. If A is any formula of the statement calculus, then
either it is a theorem or else an incz)nsistent theory results by adding
as additional axioms all formulas resulting from A by substituting
arbitrary formulas for its statement variables.

Proof. Let A be a formula which is not a theorem, and let us augment
the axiom schemas of the statement calculus with all formulas resulting
from A by substituting arbitrary formulas for its statement variables.
Since A is not a theorem, it is not a tautology. Therefore, it takes the
value F for some row of its truth table. Referring to one such row, we
choose an instance of A as follows. Substitute a V -id for the prime
formulas of A which are T, and substitute a A -1 a for those prime
formulas which are F. The resulting axiom, B, will always take the
value F. Then --, B is a tautology, and hence a theorem. Thus, both B
and -, B are theorems.

One might apply the definition of negation completeness (given in
Section 5.4), with "statement" replaced by "formula," to both the state-
ment calculus and the predicate calculus. Neither is complete in this
sense. For the statement calculus this conclusion follows from the con-
sideration of any formula A whose truth table has neither all T's not
all F's; for clearly neither A nor -,A is a theorem. This is a reflection
of the fact that in the statement calculus no formula corresponds to a
particular statement. We may substitute any statement for a statement
variable. For a similar reason the predicate calculus is not negation
complete. As an example, neither al(a) nor its negation is a theorem
because neither is valid. In this case Q'(a) does not stand for a particular
statement (which one expects to be true or false) but for any statement
in which a' is interpreted as a 1-place predicate and a as an individual.

Actually, the metamathematical notion of negation completeness is
intended for only formal axiomatic theories such as N and there its
restriction to closed formulas is essential in order that it have the
intended significance. For example, in N we would not want either
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(3y) (x = y - y) (which expresses, under the generality interpretation of
the free variable present, "every natural number is a square") or
-, (3y)(x = y y) ("every natural number is not a square") to be prov-
able. However, one of (x) (3y) (x = y y) and -, (x) (3y) (x = y - y) should
be true, and hence provable.

As background for the final metamathematical notion which we shall
discuss, we recall the definition of an effective procedure as given in
Section 1. In brief, an effective procedure-or, as it is often called, a
decision procedure-is a method which can be described in advance
for providing in a finite number of steps a "yes" or "no" answer to
any one of a class of questions. Such a class of questions can be iden-
tified with a predicate in the metalanguage in the obvious way. For
example, the predicate "p and q are relatively prime" embraces the
class of questions concerning the relative primeness of pairs of integers.
Thus we may speak of a decision procedure for a predicate. (Inci-
dentally, the Euclidean algorithm provides a decision procedure for
the predicate mentioned.) The problem of discovering a decision pro-
cedure for a predicate is called the decision problem for that predicate
and, if a decision procedure is found, the predicate is said to be effec-
tively decidable; if there does not exist such a procedure the predicate
is undecidable. Although we require of a formal axiomatic theory that
there be a decision procedure for the notion of proof, we do not require
the same for provability. In contrast to the question of whether a given
sequence of formulas is a proof (which requires merely the examination
of a displayed finite object), the question of whether a given formula is
a theorem requires looking elsewhere than within the given object for
an answer. Further, the definition of a proof sets no bounds on the
length of a proof, and to examine all possible proofs without bound on
their length is not a procedure which yields an answer to the question
in a finite number of steps in the event the formula is not a theorem.
This being the state of affairs, the decision problem for provability
has special significance for formal theories. Accordingly, it is often called
the decision problem for a theory. A theory for which the decision prob-
lem can be answered in the affirmative is said to be decidable; other-
wise, it is undecidable. An example of a decidable theory is the state-
ment calculus, for since a formula is a theorem iff it is a tautology, the
method of truth tables provides a decision procedure. Some other
decidable theories are described at the end of Section 9.

So long as attention is restricted to results of a positive character
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concerning decidability, an intuitive understanding of this concept suf-
fices. It is up to the creator of a theorem which asserts that some theory
is decidable to provide and establish a decision procedure. The situation
changes radically, however, if one proposes to prove a result of a negative
character, namely, that a theory is undecidable. Clearly, a precise
definition of a decision procedure is indispensable in this connection. A
definition which is generally agreed on is given in Section 8.

6. Consistency and Satisfiability of Sets of Formulas

In this section we derive some properties of a class of theories for
which the axioms are those of the pure predicate calculus (without and,
later, with the axioms of equality). By being sufficiently ambiguous in
the description of these theories we obtain results which have applica-
tions to both the predicate calculus and, in view of the remark made in
Example 4.5, first-order theories. The applications to first-order theories
consist of more definitive results concerning consistency, completeness,
and categoricity than were obtained earlier for informal theories.

We begin by fixing our attention on a particular theory Zo which
may be the pure predicate calculus of first order, or some first-order
theory with the symbol for equality deleted, or some theory in between
these extremes. If Sto is not the pure predicate calculus, then it is deter-
mined by some definite choice of primitive symbols which includes
individual symbols (including a denumerable set of individual variables
a0, at, a2, ), possibly some predicate symbols, and possibly some oper-
ation symbols, f but without equality. The definition of an interpretation
of Zo may be obtained from that given for this notion in the case of a
first-order theory. The definition of satisfaction of a formula by a
D-sequence is obtained from the earlier one by deleting references to
equality. Then it is clear that the remaining definitions given for first-
order theories apply to Zo.

In order to launch our discussion of Zo, further definitions are needed.
These extend some for the statement calculus given in Section 2. A
formula A is satisfiable in a nonempty set D if there exists an interpreta-
tion ` of To with domain D such that A is satisfied in Z. Notice that
satisfiability of A in D hinges on the possibility of making some assign-
ments of values to the free variables in A such that there results satis-

t Of course, we assume that the union of the set of predicate symbols (some of which may
as variables and others as constants) and the set of operation symbols is nonempty.
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faction by a D-sequence which exhibits this choice of values. A formula
of To is satisfiable if it is satisfiable in some D. Just as the notion of the
validity of a formula may be regarded as the analogue, for to, of the
notion of being a tautology in the statement calculus, so may satis.
fiability be regarded as the analogue of not being a contradiction. It is
clear that a formula is satisfiable (in a given domain) if its negation
is not valid (in that domain), and a formula is valid (in a given domain)
if its negation is not satisfiable (in that domain). A set of formulas is
simultaneously satisfiable if each formula is satisfiable in some domain
by some D-sequence. The definitions of an inconsistent and of a con.
sistent set of formulas of To read the same as for the case of the state.
ment calculus. It is left as an exercise to prove that a set of formulas is
consistent if every finite subset is consistent.

The main results which we shall derive in this section concern prop-
erties of a set r of formulas of to. Since, for applications to first-order
theories, r will be the set of mathematical axioms, and since, as men.
tioned in Example 4.4, we may take such formulas to be statements, we
shall express most of our results for a set of statements. We begin by
extending the result obtained in Section 2 to the effect that the notions
of consistency and satisfiability of a set of formulas of the statement
calculus are equivalent to the case of a set of statements of To.

THEOREM 6.1. If the set r of statements of to is simultaneously
satisfiable, then r is consistent.

Proof. Assume that r is an inconsistent set of statements. Then there
exists a finite subset IA,, A2, , Am) of r and a formula B such that
A,, A2, , A. I- B A --i B. By Theorem 5.3, m > 0. Then the
deduction theorem and the statement calculus give F- -1 AM;. The
reasoning in the proof of Theorem 3.3 may be applied to this result
to conclude that -1 A; A; is valid. Hence, A A; is not satisfiable,
which means that JAI, A2, , Am) is not satisfiable in view of the
definition of conjunction. It follows that r is not satisfiable.

The reader is asked to convince himself that this proof is not admix-
Bible in the sense of Hilbert's metamathematics. In fact, the definition
of satisfiability of a set of formulas is probably not admissible.

The converse of Theorem 6.1 is a much deeper result. We state it
in a sharp form due to L. Henkin (1949). The proof that we shall
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give-a refinement of Henkin's original proof-appears in a paper by
G. Hasenjaeger (1953), who attributes the idea to Henkin. It is an
elaboration of that given for Theorem 2.7.

THEOREM 6.2 . If r is a consistent set of statements of Zo, then r
is simultaneously satisfiable in a domain whose cardinal number is
equal to the cardinal number of the set of primitive symbols of Xa.

Proof. We shall carry out the proof for the case where the set of
primitive symbols of To is denumerable and indicate afterward the
modifications needed in the general case.

Let u,, u2, be symbols which do not occur among the symbols
of to. Let % be the theory whose primitive symbols are those of to
augmented with u,, u2, as individual constants. The set of for-
mulas of T is denumerable and there is an effective procedure for
listing them. This induces an effective enumeration of the statements
of T and, in turn, of those statements of the form (3x)A(x).t Suppose
that (3x)Ai(x), for i = 1, 2, , is an enumeration of all such state-
ments.

We shall use this last ordering to construct a consistent set of
statements of T that includes P. We begin by defining a sequence
Po, r,, F2, of sets of statements of `.slr by induction. Let Po be P.
In the list u,, u2, -, let u;, be the first constant that does not occur
in (3x)A,(x). Then take Ti to be the set whose members are

(3x)A,(x) -+
and the members of Po. Assuming that P; has been defined, let u,,.,,
be the first constant in the list u,, u2, that does not occur in
Al(u;,), , Ai(u;;), (3x)Ai+,(x). Then take Pi+, to be the set whose
members are

(3x)A;+t(x) -a Ai+t(uj,..)
and the members of F.

Then each Pi (i = 0, 1, 2, - ) is consistent. For example, to show
that Ti is consistent, assume to the contrary that Po, (3x)A,(x) -+
A,(u,,) - B A -1 B for some formula B. Then, by the deduction
theorem,

Po 1- ((3x)A,(x) -' Ai(u,,)) --+ B A B.

In some demonstration of ((3x)A,(x) -+ A,(u,,)) -+ B A -, B, replace
u,, by a new variable y which does not occur in any formula of the
t The notation "A(x)" for the type of formula under consideration is a convenient one for

exhibiting the result of substituting some individual symbol for the free occurrences of x.
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deduction. Since u,, does not occur in any member of To or in (3x)Al(x),
we then have

Tot- ((3x)Ai(x) -' AI(y)) --' B A -1 B.
From this can be inferred, by the machinery of the predicate calculus,

ro l- ((3x)Ai(x) - (3y)AI(y)) -+ B A -t B.
Then a change of bound variable f gives

ro F- ((3x)AI(x) -' (3x)Ai(x)) B A -1 B.

But since (3x)Ai(x) -> (3x)Ai(x) is a theorem, we have To l- B A --1 B,
contrary to the supposed consistency of To.

Similarly, the consistency of Ti+i follows from that of Ti, and
thereby the consistency of each Ti is established by induction. Let F
be the union of the sets To (= T), Ti, T2, . Then I' is a consistent
set. For the contrary assumption implies the inconsistency of some
finite subset of r, and hence that of some Ti, contrary to what was
proved above.

Next we shall construct a set A of statements of T which includes r
(and hence r) and which is maximal consistent in the sense explained
in the proof of Theorem 2.7. For this purpose we define an infinite
sequence of sets Ao, AI, A2, as follows. Let AO be the same as P.
Then, if the (n + 1)th statement A of Z (in the chosen enumeration
of these statements) is consistent with A, (that is, if A. U { A } is a
consistent set), let A,,+i be the set whose members are A and the
members of A,,; otherwise take An+i to be the same as A,,. It follows
immediately by induction that each of these sets is consistent. Let A
be the union of the sets Ao, A,, 42, . Clearly, A includes P. More-
over, it has the following two properties, which is all we shall use to
show that A, and hence r, is simultaneously satisfiable in a denumer-
able domain.

(i) A is a maximal consistent set of statements of Z.
(ii) If a formula of the form (3x)A(x) is in A, then for some

constant u;, A(u;) is in A.

For the proof of (i) we note first that the consistency of A is shown
by the same argument as was used above to establish the consistency
f This is an application of a theorem about the predicate calculus which may be stated

as follows: If y is an individual variable which is not free in a formula C and x is an individual
variable which does not occur in C, if E results from D by substituting x for y in C for an occur-
rence of C in A and if re j- D, then ro 1-- E.
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of I . Next, let A be any statement that is consistent with A. Suppose
that A is the (n + 1)th statement of Z. Then A. U I A) is a consistent
set. Therefore, by the definition of O"+1, A is in A,, and hence in A.

The proof of (ii) is left as an exercise.
Next we mention five further properties of A which stem from (i)

and which we will need.

(iii) A statement A is a member of A if A I- A.
(iv) If B is any statement, then exactly one of the pair B, -, B

is in A.
(v) If B C A, then A -4 B E A for any statement A.
(vi) If A V A, then A -+ B E A for any statement B.
(vii) If AEAand BQA,then A-9BVA.

These five properties of a maximal consistent set were listed in the
proof of Theorem 2.7. The earlier proof of the first carries over
directly to A. Proofs of the earlier statements of the remaining four
(which the reader was asked to provide) also-carry over directly to A.
Thus, we feel free to continue.

This we do by introducing an interpretation, Z, of Z. As its
domain, D, we take the set of individual constants of Z. We order all
constants (individual and predicate) of Z in a sequence

(Co, C,, C2, ... )

and then, corresponding to this, we form a sequence (eo, e1, G2, )
as follows. If C; is an individual constant we take e1 to be C;, and
if C; is an n-place predicate constant we take a to be the n-ary
relation in D such that for individual constants dl, d2, - , do we have
(d1j d2, , E e1 if A E- C;(d1, d2, , Q. The key property of Z
is the following: Each statement A of T is true in Z iff A I- A. The proof
(sketched for an A containing no operation symbols) is by induction on
the number m of symbols in A, counting each occurrence of -,, -*,
and a universal quantifier as a symbol. If m = 0, then A has the form
P(d,, d2, , da), where P is a predicate symbol and the d's are in D. If

A F- P(dl, d2, ... , 4),
then, clearly, every D-sequence satisfies A since (d1, d2, , 6) is a
member of the n-ary relation assigned to P. The converse is equally
obvious. Assume next that the assertion holds for all statements with
fewer than m symbols and consider A with m symbols.

Case 1. A is -, B. Assume that A 1- -, B. Then it is not the case
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that A I- B, by (iii) and (iv). From the induction hypothesis it
follows that B is not true and, hence, - B is true in Z. The converse,
that -' B is true in Z implies A I- -, B, follows by reversing this
argument.

Case 2. A is B -> C. This is disposed of by properties (v)-(vii)
of A. The details are left as an exercise.

Case 3. A is (x)B(x). If A F- (x)B(x), then by (PC5) and modus
ponens, A F- B(d) where d is any individual constant. The induction
hypothesis and clause (V.) of the definition of satisfaction then imply
that (x) B(x) is true in Z. For the converse, assume that we do not
have A I- (x)B(x). Then -, (x)B(x) and, hence, (3x) -1 B(x)-by the
definition of the latter formula together with modus ponens-is in A.
From (ii) it follows that there exists u; such that -1 B(u;) C A, so we
do not have A I- B(u;). Hence, by the induction hypothesis, B(u;) is
not true in ¶, which implies that (x) B(x) is not true in D by the
definition of truth for (x)B(x).

In view of the result just proved, all formulas of A are true in
and so are simultaneously satisfiable in D. Since r is a subset of A,
the theorem is proved for the case of a To whose primitive symbols
are denumerable. The only modifications necessary for the proof of
the general case are (i) the replacement of the ui's by symbols u
where a ranges over a set with the same cardinal number as the set
of primitive symbols of To, and (ii) the selection of some one well,
ordering of the formulas of the new T in place of the standard enumer-
ation used above.

The depth of this result may be inferred from the fact that several
profound theorems pertaining to both the pure predicate calculus and
applied predicate calculi can be derived easily from it. We state as the
first result in this category the completeness theorem for such theories.

THEOREM 6.3 (the completeness theorem). If A is a valid for-
mula of To, then I- A.

Proof. Assume that A is valid and consider the closure VA of A. As
observed earlier, VA is then valid and, in turn, -, VA is not satisfi,
able. Hence, by Theorem 6.2, { -, VA } is inconsistent. Therefore, for
some formula B, VA I- B A -, B, and then, by the deduction
theorem and the statement calculus, I- VA. Then, by (PC5) and
modus ponens we may clear away any universal quantifiers to
obtain I- A.
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If To is taken to be the predicate calculus, then Theorem 6.3 becomes
Godel's completeness theorem (Theorem 3.4). Godel, it may be noted,
proved the completeness of the pure predicate calculus and then indi-
cated how the method used can be extended to obtain Theorem 6.2
for the pure predicate calculus.' Incidentally, for the pure predicate
calculus, Theorem 6.2 may be phrased in the following somewhat
more striking form: Every consistent set of statements of the pure
predicate calculus is simultaneously satisfiable in the set N of natural
numbers. This version follows from the fact that the cardinality of the
set of primitive symbols in this case is t4o and, since only the cardinality
of a set matters when it is being considered as the domain of an inter-
pretation, N may be used under the circumstances.

THEOREM 6.4. If P is a set of statements of To which is simul-
taneously satisfiable, then r is simultaneously satisfiable in a domain
whose cardinal number is equal to the cardinality of the set of prim-
itive symbols of To.

Proof. Apply Theorem 6.1 and then Theorem 6.2.

From Theorems 6.1 and 6.2, when stated for the case of sets of
arbitrary formulas (instead of statements) of the pure predicate calculus,
follows the Skolem-Lowenheim theorem : If a set of formulas of the pure
predicate calculus is simultaneously satisfiable, then it is simultaneously
satisfiable in N. Lowenheim first proved this for the case of a single
formula. Skolem (1929) generalized this result to the case of simultaneous
satisfaction of a countable set of formulas.

THEOREM 6.5. Let r be any set of statements of To such that
every finite subset of r is simultaneously satisfiable. Then F is simul-
taneously satisfiable in a domain whose cardinality is equal to that of
the set of primitive symbols of To.

Proof. Assume that F is not simultaneously satisfiable. Then r is
inconsistent, by Theorem 6.2. Hence, there is a formula B such that
both r I- B and F H B. Since the demonstrations of B and -, B
from r are finite sequences of formulas, we see that some finite subset
of r is already inconsistent. This conclusion is incompatible with the
hypothesis, according to Theorem 6.1.
f However, Godel's proof does not extend to the case of a theory which has uncountably

many primitive symbols.



416 First-order Theories I CHAP. 9

It is possible to deduce from Theorem 6.2 an extended version of
Theorem 6.3, which is known as the strong completeness theorem:
For any set r of statements of To, if r K B, then r h- B. Conversely,
the strong completeness theorem implies Theorem 6.2 and thereby
follows the equivalence of these two results. This equivalence extends
one obtained in Section 2 for the statement calculus. We shall establish
the strong completeness theorem next and leave the proof of the converse
as an exercise.

THEOREM 6.6. For any set r of statements of To, if r B,
then r F- B.
Proof. Assume that r K B. Then the set r u { -, B} is not simul-
taneously satisfiable. To prove this we note first that if r is inconsistent,
then (Theorem 6.1) it is not simultaneously satisfiable, and hence
r u {-,B} is certainly not satisfiable. If r is consistent, then (Theo-
rem 6.2) it is simultaneously satisfiable and any model of IF is a
model of B, so again IF U { B } is not satisfiable. From the non-
satisfiability of r U { -, B} follows the inconsistency of this set. Hence,
by the deduction theorem and the statement calculus, r I- B.

Theorem 6.2 holds for a theory Z, like To but with equality, if we
replace "a domain whose cardinal number is equal to" by "a domain
whose cardinal number is less than or equal to." Before we prove this
we note that the definition of "simultaneous satisfaction in a domain D"
now includes clause (II.) of the definition of satisfaction of a formula
by a D-sequence. That is, the symbol " _" must denote the relation of
equality between individuals of D. (It is because of this inflexible
interpretation of the relation of equality that it is classified as a logical
constant.) To begin the proof, let E, and E2 be the set of the closures of
all instances of the axiom schemas (PC6) and (PC7), respectively, for
equality. Given a set r of statements of T-1, we consider the set
r U E, U E2 of statements of the theory To obtained from Z, by drop-
ping the axiom schemas (PC6) and (PC7). Since Theorem 6.2 is appli-
cable to this To, there exists, an interpretation of To with domain D in
which r U E, U E2 is simultaneously satisfied, provided that it is con-
sistent in To (which is the case if IF is consistent in a,). To " =" there
is assigned by this interpretation some binary relation e k in D. Since
from E, and E2 one can deduce in To that (x) (y) (x = y --),y = x) and
(x) (y) (z) (x = y A y = z --)' x = z), C k is an equivalence relation on D.
The relation ek has the additional property that for any n-ary relation
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ei of the interpretation of to, dlekd,, d2ekd2, , dnekdn imply that
(d,, d , , dn) C ei if ( ', d d i , dn) C ei. This is guaranteed because
in To we can deduce the formula
(1) x,=x1'Ax2-x$^...A\xn=x.--

... , 1
... , ) )(Ci(xl, x2, xn) HCi x, x2, X.

from assumptions E, U E2. Now let D' be the set of equivalence classes
modulo ek. Then for each subset of D" the canonical mapping on D
onto D' determines a subset of (D')n. Consequently, to each constant C,
of %, may be assigned a relation in D' in the natural way. By this route
we are led to an interpretation of Ti with domain Y. If c is an individual
constant to which is assigned d in D, then to c is assigned the equivalence
class (element of D') determined by d. Hence, the relation of equality
of individuals of D' is assigned to the equality symbol in . ,. Further,
r is simultaneously satisfied in D' since r U E, U E2 is satisfied in D
and because of the property (noted above) of ek, which stems from
formula (1).

From the foregoing modification of Theorem 6.2 may be inferred
Theorem 6.3 in the form: If A is a valid formula of Z1i then 1- A. This
result includes Godel's completeness theorem for the pure predicate
calculus with equality. Theorems 6.4 and 6.5 also hold for T, when
"equal to" is replaced by "less than or equal to."

EXERCISES
6.1. Prove that a set of formulas of To is consistent iff every finite subset is

consistent.
6.2. Referring to the proof of Theorem 6.2, prove that A has property (ii).
6.3. Referring to the proof of Theorem 6.2, the reader should agree that the

proof-outline of the key property of `tJ (that a statement A of Z is true in D if
A I- A) is lacking in precision. He can correct matters by proving by induction
on the length of A the following

LEMMA: For every D-sequence a = (do, d1, d2, ) and every formula A of
Z, A(a) C A if a satisfies A, where A(a) is the result of substituting dk for all
free occurrences of ak in A, k = 0, 1, 2, .

6.4. Write out an expanded version of the proof given of Theorem 6.3, sup-
plying all missing details.

7. Consistency, Completeness, and Categoricity
of First-order Theories

In this section we shall discuss the notions mentioned in the section
heading for an arbitrary first-order theory Z having a set r of statements
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as its mathematical axioms. The results of Section 6 become available
for use in our discussion simply by changing the status of r from that
of a set of axioms to a set of assumption formulas. To explain this in
detail, let Zi be the theory which coincides with Z except that the axioms
of Zi are just the logical axioms of T. Then, as shown in Example 4.5,
the theorems of T are precisely those formulas of T1 which are deducible
(in Zi) from r as a set of assumption formulas. The transition from Z
to Ti amounts to nothing more than the change in status of r men-
tioned above. When Z is regarded as %I it qualifies as a theory of the
type considered in the latter part of Section 6, so the results obtained
there may be applied to Z.

When discussing $ in this way, the definition of a model of Z coincides
with that of a model of r. For, by definition, a model of Z is a model
of the set of axioms of Z, but this amounts to an interpretation which
is a model of r, since the remaining (logical) axioms of Z are true in
every interpretation. Likewise, when our earlier definition of the con-
sistency of a theory is applied to Z, it is seen to coincide with the more
recent definition of consistency for r. The definitions given earlier in
this chapter of negation completeness and of categoricity of an axiomatic
theory may also be applied to r instead of Z. In summary, the notions
which are uppermost in our mind now may be formulated at one's
pleasure for either or its set of mathematical axioms. Sometimes
there are psychological reasons for having a preference.

Our first concern is the extension of Godel's completeness theorem
and its converse to Z, thereby establishing the correctness and adequacy
of the deductive apparatus which is available for Z.

THEOREM 7.1. A model of Z is a model of the set of theorems
of X.

Proof. Let B be a theorem of %. Then r I- B in Z1, which means
that Al, A2, - , A. I- B f o r members A,, A2, , A. of r. In turn,
A, A; -+ B is a theorem of Z1. If Z is a model of Z, then Z is a model
of (A,, A2, , A.) and hence of Further, as a theorem of Zi,
/\;A; --* B [which may be reformulated as (-, /\7,A;) V BI is a valid
formula and hence has Z as a model. Thus, Z is a model of B.

An alternative version of Theorem 7.1 is : If B is a theorem of T,
then B is true in every model of T. We continue by proving the converse
statement. Assume that B is true in every model of Z. Then VB is true
in every model of X. Thus r v (-1VBJ has no model, and consequently
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is inconsistent by Theorem 6.2. Thus, for some formula C we have r,
-1 YB F- C A --i C, and then, by the deduction theorem and the state-
ment calculus, r F- bB and, in turn, r F- B, which completes the
proof. Taken together, these two results mean that the theory of inference
at hand (that is, that of the predicate calculus) enables one to establish
as theorems of only and all those formulas which are valid con-
sequences of the mathematical axioms of T. We summarize this conclu-
sion in our next theorem.

THEOREM 7.2. A formula B is a theorem of T if B is true in
every model of Z.

We take up next the question of the consistency of (the set of mathe-
matical axioms of) T. For such a theory, with its formal definition of
deduction, consistency becomes amenable to exact discussion. Indeed,
according to Theorems 6.1 and 6.2, Z is consistent if it has a model,
thereby establishing that consistency and satisfiability are entirely equiv-
alent notions. We recall that in Section 5.3 we gave a heuristic argument
that in informal theories satisfiability implies consistency. Now we have
an exact form for both that argument and the meaning of the concepts
involved. A further gain that is achieved by formalization is the converse,
which is a striking result when stated as, "If the set of axioms of a theory
is not satisfiable, then a contradiction can be derived." Certainly this
is by no means clear when operating at the intuitive level. Unfortunately,
we feel obliged to detract from these lofty observations by mentioning
that although in principle a model exists for every consistent first-order
theory, finding or describing a model may be difficult, and it is a fact
of life that many mathematical axiomatic theories are not of first order.

We consider next the question of completeness of a first-order theory
%. Theorem 7.2 gives an affirmative answer in the sense that validity
implies provability, so we turn to the concept of negation completeness.
As with consistency, this has a characterization in terms of models.

THEOREM 7.3. Z is negation complete if every statement of T
which is true in one model of Z is true in every model of T.
Proof. If Z is inconsistent, then the left-hand side of the biconditional
is trivially true and the right-hand side is vacuously true. So assume
that Z has a model. Breaking the biconditional of the theorem into
two conditionals, we shall prove both parts by contraposition.

Suppose there is a statement A and models Za and tz of Z such
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that A is true in Zt and not true in S D2. Then neither A nor -,A is a
theorem, by Theorem 7.2, and Z is not negation complete. Conversely,
assume that Z is not negation complete; let A be a statement such
that neither A not -,A is a theorem. Adjoin A to the set I' of axioms
of Z. The set r u {A} is consistent, for otherwise we could deduce
from this set a formula of the form B A -, B, and then, by the deduc-
tion theorem and the statement calculus, r i- -,A, which is contrary
to assumption. Similarly, r U { -, A } is consistent. Hence, there exist
models Zt and X12 of r u { A } and r u { -, A 1, respectively, by
Theorem 6.2. These are also models of r (that is, of Z) and A is
true in )i and not true in Z2.

We assume that our earlier discussion of isomorphism is adequate
for gathering the meaning of this notion for the case of models of first-
order theories. It is left to the reader to prove that if a statement is
true in one model of Z, then it is true in any isomorphic model. We
can now prove the following

THEOREM 7.4. If Z is categorical, then Z is negation complete.

Proof. Assume that Z is categorical. Then a statement which is
true in one model of Z is true in every model. Hence, Z is negation
complete, by Theorem 7.3.

Parenthetically we note at this point that from each of Theorems 7.3
and 7.4 we may infer the completeness of a theory which has no model-
that is, a theory which is inconsistent. (Of course, the completeness of
an inconsistent theory is also an immediate consequence of incon-
sistency.) This triviality having been uncovered, henceforth we shall
consider completeness only for consistent theories.

From the next two theorems we may infer that the range of applicabil-
ity of Theorem 7.4 is rather limited, since together they imply that
practically no first-order theory is categorical.

THEOREM 7.5. If has an infinite model, then for every infinite
cardinal number c which is greater than or equal to the cardinality
of the set of formulas of Z, Z has a model of cardinality c. t

Proof. Let Z be an infinite model of Z and let A be a set of cardin-
ality c. Adjoin to one new individual constant a for each element
t When speaking of the cardinal number of a model we have in mind the cardinal numb*

of its domain.
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of A and adjoin to the set r of mathematical axioms of 2 all formulas
of the form a 76 fg for distinct a and P. Let St' denote this extension
of St and let r' denote the set of its mathematical axioms (thus, r'
is the union of r and the set of all axioms of the form a 0 p9). Since
the cardinal number of the set of primitive symbols of St cannot
exceed c, the cardinal number of the set of primitive symbols of St'
is equal to c. Further, S is a model of any finite subset of r', since
(i) it is a model of r, and (ii) being infinite, we can assign to any
finite number of distinct a's distinct elements of the domain of Z.
It follows from Theorem 6.5 (taking into account the presence of
the equality relation) that r' has a model V whose cardinality-
call it c'-is less than or equal to c. But since to the equality symbol
is assigned the relation of equality of individuals in the domain of `S',
c' > c. Hence, `V' is a model of T, having cardinality c.

THEOREM 7.6. If St has models of arbitrarily large, finite car-
dinality, then it has an infinite model.

Proof. For any positive, finite cardinal number n, the domain of
any model of the formula

Cn: (3ao) (3ai) ... (3an-i) (ao 5,64 ai A ao 0 a2 A ... A ao
s an_, A a, 5,6 a2 A ... A an-2 0 an-1)

has at least n elements. Let us adjoin to the set r all statements of
the sequence C1, C2, , Cn, and call the augmented set of axioms
F'. Then, if St has models of arbitrarily large, finite cardinality,
each finite subset of F' has a model, and hence r' has a model D
by Theorem 6.5. Since to the equality symbol is assigned the rela-
tion of equality of individuals in the domain of `aJ, this domain must
be infinite if every C is to be true in Z. Since every Cn is true in Z,
it is an infinite model.

The two preceding theorems imply that unless a finite upper bound
on the cardinality of models of T can be exhibited, then St has models
of any preassigned infinite cardinality. Such a theory cannot be cat-
egorical, for since isomorphic models always have the same cardinality,
the existence of models of St having different cardinalities excludes the
possibility of every pair of its models being isomorphic. Even when a
finite upper bound on the cardinality of models of T can be found, if
models of different cardinalities exist, then St is not categorical for the
same reason as above. Hence, a necessary condition for categoricity of
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a first-order theory Z is that every model have the same finite car-
dinality. But even this condition is not sufficient. To prove this we note
first that it is possible to augment the set r of axioms of % with an axiom
that restricts the domain of any model to have a preassigned cardinal
number. For example, the conjunction of the formula C (used in the
proof of Theorem 7.6) and the formula -, suffices to ensure that
the domain of every model has exactly n elements. Suppose now that
we adjoin to the mathematical axioms of elementary group theory, as
formulated in Example 4.1, the axiom which expresses the fact that
there exist exactly four objects. Then every model of this theory has
cardinal number 4. After the reader has studied a bit of the theory of
groups presented in Chapter 8, he will be able to construct two non-
isomorphic models of the theory just defined. So the condition that
every model of a theory have the same finite cardinality, which is
necessary for categoricity, is not sufficient.

Although categoricity has essentially no applications to questions of
completeness, the following generalization does lead to significant results
in this area. If c is a cardinal number, a first-order theory is called
categorical in power c if any two models of cardinality c are iso-
morphic. The following result concerning such theories was obtained
independently by R. L. Vaught (1953) and J. Loi (1954).

THEOREM 7.7. t If all models of Z are infinite and if, for some
infinite cardinal c greater than or equal to the number of formulas
of Z, Z is categorical in power c, then T is negation complete.

Proof. If T is inconsistent, the theorem is true in a trivial way, so
assume that X is consistent. We shall prove that for any given state-
ment of X either it or its negation is a theorem of S, by assuming
the contrary and deriving a contradiction. So let S be a statement
of Z such that neither S nor -,S is a theorem. Let T' be the theory
which results from Z by adjoining S as an axiom and let " be the
theory which results from Z by adjoining -i S as an axiom. Since -1 S
is not a theorem of Z, V is consistent, and, since S is not a theorem
of Z, V" is consistent. Hence, V has a model `Y' and V" has a model
`s", according to Theorem 6.2. Since ¶' and Z" are models of 2
as well, both are infinite by assumption. Let c be an infinite cardinal
such that any two models of Z of cardinality c are isomorphic. Then,
f (Added in proof.) In M. D. Morley (1962) there is announced the following theorem

which meshes very nicely with the above result: If a first-order theory is categorical in one
uncountable power, then it is categorical in every uncountable power.
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by Theorem 7.5, V has a model 11' and V" has a model a", both of
cardinal number c. Again, (9' and (&-" are also models of T, and con-
sequently they are isomorphic. However, this is impossible, since S
is true in t' while -1 S is true in (Y".

This theorem can be used to establish the completeness of a variety
of theories. Some examples follow.

EXAMPLES
7.1. The elementary theory of densely ordered sets is a first-order theory in

which the 2-place predicate < is the only mathematical constant and whose
mathematical axioms are the following.

01. (x) --i (x < X).
02. (x)(y)(x 96 y -'x < y Vy <x).

03. (x) (y) (z) (x < y A y < z -' x < z).
04. (x) (y) (3z) (x < y -- x < z A z < y).
06. (3x) (3y) (x < y)
06. (x) (dY) (3z) (y < x A x < z).

The models of this theory are precisely all simply ordered dense sets of at least
two different elements and have neither a least nor a greatest element. Since
01 and B, each with its natural ordering, are models, the theory is not cate-
gorical. However, according to the result stated at the beginning of Exercise
2.6.11, any two denumerable models are isomorphic (since each is isomorphic
to Q with its natural ordering). It follows that Theorem 7.7 is satisfied with
c = No, and thus the theory is negation complete.

7.2. The elementary theory of atomless Boolean algebras is the first-order
theory described in Chapter 6 with the axioms given there supplemented by
one which implies that each model (that is, each Boolean algebra) has no atoms.
All such algebras are infinite, and it can be proved that any two denumerable
atomtess algebras are isomorphic. Hence, the theory is negation complete.

7.3. The elementary theory of infinite commutative groups in which every
element different from the identity has a given prime order p is the theory
defined in Example 4.1, with the necessary additional axioms to ensure that
every model has the distinguishing features stated. For example, among these
axioms will appear the formulas C1, Cs, , C,,, mentioned in the proof of
Theorem 7.6. It can be shown that any two models of this theory which have
the same cardinal number are isomorphic. That is, the second condition of
Theorem 7.7 is satisfied for an arbitrary infinite cardinal c. Hence, for each p,
the theory is negation complete.

7.4. The elementary theory of algebraically closed fields of given character-
istic p may be described as follows. First, the theory of fields as defined in Chap-
ter 8 is formalized as a first-order theory. Then, if p > 0, the formula X, which,
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translated into everyday language, states that the successive addition of any
element to itself p times yields the zero element, is added as an axiom. If p = 0,
we add instead the sequence of formulas -1X2, -iXs, -iXs, , -,Xp, -
Finally, to restrict models to fields which are algebraically closed (which
means that every polynomial equation with coefficients in the field has a root
in the field), we add another infinite sequence of axioms, A2, A3, , A,,, ,
where A. expresses the fact that every polynomial of degree n has at least one
root.

There are pairs of denumerable algebraically closed fields of any given char-
acteristic which are not isomorphic. However, it is known that any two un-
countable algebraically closed fields of the same cardinality and the same
characteristic are isomorphic. So, again, the conditions of Theorem 7.7 are
satisfied for every c > No and the theory, for each choice of p, is complete.

The above proofs of negation completeness are all due to Vaught;
however, the results themselves are known earlier, having been ob-
tained by other methods. We remark further that each of these theories
is decidable. This matter is discussed in Section 9.

We conclude the section with the unraveling of a paradox that can
be derived from two of our earlier theorems. On the one hand, Theorem
2.1.8 seems to imply that the arithmetic of the natural numbers is a
categorical theory (since it asserts that any two models are isomorphic),
while on the other hand Theorem 7.5 implies that it cannot be cate-
gorical. To bring this conflict into sharp focus we prove a version of
Theorem 7.5 which is tailored specially- for the matter at hand: The
theory N is not categorical. To prove this we introduce the first-order
theory N' which coincides with N except that it has a further individual
constant, u, and the following additional mathematical axioms:

U 9 & 0

u00+1
u 54 0 + 1+ I + + 1 (with n occurrences of "1")

Now let A be any finite subset of the set r' of mathematical axioms
of N' and consider the following interpretation of A. As the domain of
the interpretation we choose N, and to -}-, , 0, and 1 we assign the
familiar meaning, and, if "u Fx- 0 + 1 + + I" (with m occurrence's
of "1") is the last member of the above sequence of axioms that occurs
in A, then to u we assign m'. Clearly this interpretation is a model of A,
Hence, by Theorem 6.5, I", that is, N', has a model. This model is not
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isomorphic to (N, +, -, ', 0, 1) (for what would be the image of u under
a proposed isomorphism?). This completes the proof.

The fact that this theorem is not in conflict with Theorem 2.1.8 be-
gins to take form when one attempts to formalize the proof of The-
orem 2.1.8. It is found that the first-order predicate calculus is inade-
quate to carry out this proof because use is made of bound occurrences
of predicate variables. That is, the formalization requires the so-called
predicate calculus of second order, which, unlike that of first order,
admits quantification of both individual and predicate variables. At
this point one might conclude that the state of affairs might be sum-
marized by the assertion that when the arithmetic of the natural num-
bers is formalized as a first-order theory it is not categorical but when
formalized as a "second-order theory" it is. Matters are even 'more
complicated than this, however, since the latter part of the assertion
must be qualified before it becomes correct. The following is an indi-
cation of the precise state of affairs.

Suppose that arithmetic is formalized as a second-order theory N".
In rough terms this means that we start with the first-order pure pred-
icate calculus with equality, adjoin the constants introduced for N,
and alter the definition of formula to admit as a formula (x)A for any
formula A and any individual or predicate variable x. Finally, adjoin as
the mathematical axioms those introduced for N except that the axiom
schema for induction is replaced by a single axiom prefixed with the
quantifier "(A)." The definition of an interpretation is as before.
However, a description of the valuation procedure relative to an in-
terpretation with domain D must specify the range of each n-place
predicate variable for n = 1, 2, . We select as this range some non-
empty collection 61n of sets of n-tuples of elements of D. If every formula
of N" is to be meaningful in an interpretation, the sets 6'ri cannot be
chosen in an arbitrary mahner. For example, if A is a 1-place predicate
variable and A(x) is interpreted as meaning that x is in the set S, then
-,A(x) means that x is in the complement of S; hence the range for
1-place predicate variables should be closed under complementation.
In general, each method of compounding formulas has associated with
it some operation on the sets 6',,, with respect to which these sets must
be closed.t We shall assume that the satisfy all such closure condi-
tions. The earlier definition of a model is then applicable to N". If

t It is not really necessary to postulate these closure conditions, as is explained in Henkin
(1953).
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an interpretation of N" such that, for each n, <P, is the collection of all
sets of n-tuples of D (that is, each n-place predicate variable ranges
over all subsets of D") is a model, it is called a standard model. All
other models are called nonstandard models. The existence of non-
standard models-indeed, ones in which all of the domains D, Pt, Q2,
are denumerable-can be proved. Finally, we are in a position to
describe precisely the meaning of Theorem 2.1.8. It is the assertion that
any two standard models of N" are isomorphic ; that is, if only standard
models of N" are admitted as models, then N" is categorical. Thus the
formulation of the arithmetic of natural numbers as a second-order
theory is stronger than the formulation as a first-order theory. But the
existence of nonstandard models of N" means that even this theory is
not categorical. This was discovered by Henkin (1950).

EXERCISES
7.1. Formalize the theory of partially ordered sets, using a 2-place relation

symbol as the only mathematical constant. Augment the axioms with one that
means that there exist exactly three distinct objects, and then show that this
theory is not categorical.

7.2. Given any finite set of positive integers, devise a statement such that,
when it is adjoined as an axiom to elementary group theory, the cardinal num-
ber of any model of the resulting theory is one of the members of the set (and
vice versa).

8. Turing Machines and Recursive Functions f

Of the metamathematical notions which we have promised to discuss
for first-order theories, there remains that of decidability. As we have
already pointed out in Section 5, a precise definition of a decision pro-
cedure is necessary if one hopes to prove that some theory is undecidable.
In this section we develop a tool for coping with decision problems in
general. Then, in the next section, questions of decidability and unde-
cidability are discussed.

We begin with a sketch of how the type of metamathematical problem
at hand can be recast in arithmetical form. The objects of a formal theory
are various symbols, various finite sequences of symbols (the formulas
of the theory), and various finite sequences of formulas (such as deduc-
tions). Since the set of symbols of those theories with which we are con-

t In the remainder of the chapter we dd not maintain the level of rigor and degree of self-
containment exhibited up to this point. Results from without are introduced and some argu-
ments arc purely intuitive in nature.
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cerned is denumerable, so is (Theorem 2.4.5) the set of all objects. Now
suppose that we provide a particular enumeration of the set of all objects
of such a theory. If we let a metamathematical statement of the theory
refer to the indices in the enumeration instead of to the objects enumer-
ated, a statement of number theory results. More generally, a predicate
of the metalanguage of a first-order theory can be transformed into a
number-theoretic predicate, that is, a function on the set N" of all
n-tuples of natural numbers into IT, F). Now with each number-theo-
retic predicate may be correlated a function on N" into N, the so-called
characteristic function of the predicate, which takes the value 0 or I
according as the predicate is true or false. If by the computation
problem for a number-theoretic function f is understood the problem
of discovering a procedure describable in advance for computing the
value off for any given argument in a finite number of steps, each deter-
mined by the preassigned recipe, then the decision problem for a
predicate in the metalanguage is transformed into the computation
problem for some number-theoretic function. Thus, in particular, by
way of an arithmetization of the metalanguage of a theory, the decision
problem for that theory reduces to the computation problem for a
number-theoretic function.

The process of the arithmetization of the metalanguage of a theory,
which was devised by Godel for the purpose of establishing the theorems
which are discussed in Section 10, is analogous to the arithmetization
of Euclidean geometry via the introduction of a coordinate system. A
typical example is afforded by the following arithmetization of the
metalanguage of N. The starting point is a correlation of certain nat-
ural numbers with the formal symbols of N; for example, the following
might be adopted :

3 5 7 9 11 13 15 17 19 21

--I -a
and, to the ith individual variable, the ith prime greater than 22.
Having assigned numbers to symbols, we next assign numbers to for-
mulas as follows. Let n,, n2, , nk be the numbers of the symbols of a
formula A in the order in which they occur in A. Let p,(= 2), P2, . -, PA;

be the first k primes in order of increasing magnitude. Then the number
assigned to A is p' p;' pk'. For example, the numbers of the
symbols of the formula

-i (x) -1(x = 0'),

which translates into "0 has a successor," are successively 3, 9, 23
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(assuming that "x" is the first variable), 11, 3, 9, 23, 21, 13, 15, and 11.
So the number of the formula is

23 - 39 523 . 711 . 113 - 139. 1783. 1921. 2313. 2915 3111.

The numbers assigned to symbols and formulas in such a way as this
are called the Godel numbers of the symbols and formulas. Every
formula has a G6del number but not all numbers are assigned to for-
mulas. For example, the number 4(= 22) is not assigned to any formula.
If a number is assigned to a formula, the formula can always be found
as follows. Factor the number into its prime factors. Then the number
of 2's occurring in the factorization is the number of the first symbol
of the formula, the/number of 3's occurring in the factorization is the
number of the second symbol, and so on. The fundamental theorem of
arithmetic implies that this method of numbering is a one-to-one map-
ping on the set of symbols and formulas of N into N. Finally, to any
string of formulas we may correlate a unique number 2"' 3"' pknk,

where nt, n2, , nk are the successive G6del numbers of the formulas
of the string. In particular, to every formal proof corresponds a num-
ber, the so-called G6del number of the proof. We conclude our exam-
ple of arithmetization with the observation that the predicate "A is a
theorem" is representable by the arithmetic sentence "There exists a
number x which is the G6del number of a proof such that the G6del
number of A is the power of the largest prime number in the decomposi-
tion of x into a product of prime powers."

Returning to the discussion prior to the example we note that if a
computation procedure of the sort described can be found for a number-
theoretic function, the function is said to be effectively calculable.
It was the close relation between decision problems and the finding of
effectively calculable functions that first aroused the interest of workers
in the foundations of mathematics in the question of what functions
are effectively calculable. On the basis of the foregoing intuitive descrip-
tion of effective calculability we can certainly agree that such functions
as x + 1 and xy (committing the "abuse of language" whereby a func-
tion is designated by its value-a practice which we shall find convenient
to follow in this section) are effectively calculable. But to prove that a
given function is not effectively calculable requires an exact definition.

We need now to review the historical situation in the 1930's. In his
famous paper of 1931 (see Section 10) G6del employed a class of number-
theoretic functions, which are now called the primitive recursive func-
tions (see Section 2.2), and which by their very nature are seen to be
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effectively calculable. In 1934 Godel, building on a suggestion of Her-
brand, extended this class of functions to that of general recursive
functions, and these, it was agreed, are also effectively calculable. About
the same time (1932-1935) Church and Kleene defined a class of func-
tions (the X-definable functions) which, on the basis of their investiga-
tions, they proposed might be regarded as embracing all functions which
should be classified as effectively calculable. This proposal took on
more significance when Kleene proved that this class of functions is the
same as Gbdel's class. In particular, it led Church to formulate the
following thesis: Every effectively calculable function is X-definable or, equiv-
alently, general recursive. Since the converse of this statement clearly
holds, Church's thesis served to give an exact mathematical meaning
to the vague intuitive notion of a number-theoretic function being
calculable by preassigned instructions. A little later (1936-1937) a
paper by A. Turing appeared, in which was given an exact definition
of a class of functions (we shall call these Turing-computable, or
simply computable) along with the proposal that these be identified
with those functions which are effectively calculable. Shortly thereafter,
Turing proved that his class of functions was the same as the class of
h-definable functions, and hence the same as the class of general re-
cursive functions.t This result, which implies that Turing's thesis is
equivalent to Church's, tends to make more reasonable the identifica-
tion of this class of functions with that of effectively calculable functions.
For these reasons almost all research workers in foundations make this
identification.

Actually, an extension of the above is generally accepted. To describe
this we make a definition. By a partial function is meant a function
whose domain is some set of n-tuples of natural numbers and whose
values are natural numbers. That is, a partial function is a "partially
defined" number-theoretic function. The distinction between partial
functions and what we have called number-theoretic functions is often
made by calling the latter "total functions." (Note that a partial func-
tion may be a total function.) The various classes of functions mentioned
above can all be extended to classes of partial functions and the exten-
sion of the Church-Turing thesis to partial functions leads to the iden-
tification of the class of effectively calculable partial functions with the
class of partially recursive functions.

Turing's conception of computability arose as a result of an analysis
t It should also be noted that E. Post (1936), independent of Turing, formulated a class

of functions essentially the same as Turing's.
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of computation procedures (as we know them intuitively) into "atomic"
acts, sufficient repetitions of which Turing believed would suffice for
any possible computation. Because of the naturalness of this approach
we shall give it preference in our discussion. This centers on giving
a mathematical characterization of a class of objects which we shall
call Turing machines. These are defined by analogy with physical
digital computers. In rough terms, a Turing machine may be described
as an imaginary digital computer which is not liable to error and which
has a potentially infinite memory. In somewhat more detail, but still
at the intuitive level, we imagine a computing machine through which
runs a linear tape, assumed to be infinite in both directions and ruled
into a two-way infinite sequence of blocks as indicated by the diagram

Initially the input, in the form of a finite number of symbols which
the machine "recognizes," with one symbol to a block, is placed on this
tape, the other blocks being blank. The "moments" for the operation
of the machine are numbered 1, 2, . To the machine is assigned a
finite number of "internal states" (in the nature of simple bookkeeping
instructions) and the ability to "scan" a single block of the tape at each
moment of operation. The machine is deterministic in the sense that
at each moment its next act is completely determined by its internal
state at that moment and the symbol printed on the block scanned at
that moment. Specifically, in terms of a finite alphabet of symbols
which the machine is able to recognize, the machine is capable of the
following atomic acts, given an internal state and a symbol on the
scanned block.

(i) Erase that symbol, print a new symbol from its alphabet, and
(possibly) go'into a different predetermined internal state.

(ii) Move one block to the right (that is, scan the block located
immediately to the right of the original scanned block) and
(possibly) go into another predetermined internal state.

(iii) Move one block to the left and (possibly) go into another pre-
determined internal state.

(iv) Come to a complete halt of operations.
In order to represent these concepts symbolically, we shall use the

symbols ql, qs, to denote internal states of machines. The symbol
So, S1, will be regarded as,the alphabet which various machines are.
capable of printing; the symbols R and L will represent a move of one;
block to the right and to the left, respectively. By an expression We



9.8 I Turing Machines and Recursive Functions. 431

shall mean a finite sequence (possibly empty) of symbols chosen from
the foregoing. A quadruple is an expression having one of the following
forms :

(+

(1) qi Si Sk qL

(2) q: S2 R qi

(3) q+ Si L qt

Quadruples serve to specify the next act of a Turing machine when in
internal state qj and scanning a block on which appears the symbol S;.
One of the form (1) indicates that the next act is to replace S; by St
on the scanned block and to enter the internal state qi. One of the
form (2) indicates that the next act is a motion of one block to the right
followed by the entry into internal state qt. One of form (3) has a similar
meaning but with a motion to the left.

We now define a Turing machine to be a nonempty, finite set of
quadruples such that no two distinct members have the same first
two symbols. (The restriction is to avoid the possibility of a machine
assuming a "confused state"!) The q's and S's which appear in the
quadruples of a Turing machine are called its internal states and its
alphabet, respectively.

In order to motivate the formulation for Turing machines of the
formal analogue of a physical machine performing atomic acts in se-
quence, let us consider an example. Suppose that Mo is the Turing
machine which consists of the following quadruples:

qi So SS q2

(4) qi S1 R q2

q2 Si R q2

The following diagram is intended to indicate that Mo is in the initial
state ql and scanning a block in which So is entered. The string of S's
are initially printed on successive blocks of the tape:

S8 S1 So S2 S1 S8

(5) T

q,

Since there is a quadruple of Mo beginning with qoSo the machine per-
forms an atomic act after which it is in state q2 scanning S, now printed
on the same block. This is summarized by the next diagram:

S8 S1 S1 S2 SL S3
(6) 1

q2
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Then, because g2SiRg2 C Mo, there is a move to the right and a con-
tinuation of state q2. Because there is no quadruple of the form q2S2-
in in Mo, the machine "stops."

In place of diagrams of the type used above to describe machine
configurations, expressions can be used. For example, the expression

(7) S3 S, q2 Si S2 S1 Ss

when interpreted as meaning that the S's shown are printed on the
tape and the machine is in state q2 scanning the symbol S1, conveys the
same information as (6). An expression like (7) containing neither R
nor L and containing exactly one q and with it not the rightmost symbol,
is called an instantaneous description. If M is a Turing machine and
D is an instantaneous description, then D is called an instantaneous
description of M if the q that occurs in D is an internal state of M
and the S's that occur in D belong to the alphabet of M. An expression
composed entirely of members of the letters Si is called a tape expres-
sion.

As just defined, a tape expression is a finite sequence of symbols
whereas the intuitive analogue is a finite sequence of symbols flanked
on either side by an infinite sequence of blank blocks. To obtain the
equivalent, in the formal setting, of this additional feature of an intui-
tive tape expression, we assign the symbol So, which henceforth will
also be written as B, the special role of serving as a blank. Then, roughly
speaking, we arrange for the adjunction of a B to an end of a tape
expression when the machine is about to run off that end of the (finite)
tape expression. A precise description is embodied in the following
definition, which, in its entirety, is the formal analogue of the perform-
ance of an atomic act. Let D and E be instantaneous descriptions and
M be a Turing machine. Then we shall write

DUE
to mean that one of the following alternatives holds. Here, X and Y
denote tape expressions.

(8) D is Xq,S,Y, q=S,Skgi C M, and E is Xg1SkY.
(9) D is XgIS,SkY, gS,Rga C M, and E is iS,QaS3 Y.
(10) D is Xg,S1i q;S1Rga C M, and E is XS1g1B.
(11) D is XSkqiSJY, giS5Lga C M, and E is XgLSkSJY.
(12) D is qS,Y, q,S1Lgz C M, and E is g1BS,Y.

An operation with input 1), of a Turing machine M is a finite
sequence Dl, D2, , DA; of instantaneous descriptions such that:
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D; TM D;.+1 for i = 1, 2, k - 1. An instantaneous description D is
called terminal for M if for no instantaneous description E is D TME.
An operation D1, D2, . , DA: of M is called a computation of M with
output Dk if Dk is terminal for M. In this terminology the example
above employing the machine Mo is the (see Exercise 8.1) computation
of MO with input S3S1g1SoS2S1Ss and output SsS1S1Q2S2S1Sa. If Mo is mod-
ified by adjoining g2S2Lg1 to it, then it is easily seen that an operation
with the same input has no terminal instantaneous description. Thus an
operation with this input does not yield a computation.

In order to have Turing machines perform numerical computations
and, thereby, to define partial functions, it is necessary to introduce a
symbolic notation for natural numbers. For this we shall write the
symbol S1 as the, tally mark "I." Then we shall represent the natural
numbers by strings of tallies, I for 0, II for 1, III for 2, and so on. Further,
with the n-tuple (m1, m2, - - , m.) of natural numbers we shall associate
the tape expression I . . . I BI . . . I BI . . I, where first (from left to
right) appears the representation of m1 (as m1 + I tallies), then B,
then the representation of m2, - , then B, and then the representation
of m,. We shall abbreviate this tape expression by

Im1+1BIm2 ... BIm.+1.

An operation of a machine M having
g1ImI+1BIm=+1 ... BI=-+1

as input will be called an application of M to (ml, m2, , ma). Then,
for each positive integer n, we associate with M the partial function TIZ)
of n variables defined as follows. Given (m1, m2, , m,), if there exists
an application of M to (m1, m2, , Mn) which is a computation, then
TA,' (m1, m2, - , is equal to the number of tallies in the output of
the computation ; if no application of M to (m1, m2, , m,,) is a compu-
tation, then Tom' is undefined at (m1, m2, , m,,). A partial function of
n variables is partially computable if there exists a Turing machine M
such that the function TM' which M defines is equal to f. If, in addition,
f is a total function, then f is called computable.

EXAMPLES

8.1. The successor function is computable. Let M = {Qiiig2}. When M is
applied to m, there is the following computation :

hence, T};' (m) = m + 1.

Q1Im+1

g2Im+1
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8.2. Let
M = {q'I Bq2, gsBRqs, qal Bq4, gaBBga, g4BRgi}.

Then the function of one variable which M defines is the partial function f such
that f(m) = 0 if m is odd and f(m) is undefined if m is even. Indeed, if m is an
odd natural number there is the following computation when M is applied
tom:

g1Im+t

g2Blm

Bga'm

Bg4Bj'-'

Bmgal
Bmg4B
Bm+lq,B

Since there are no tallies in the output, f(m) = 0. It is left as an exercise for
the reader to prove that no application of M to an even natural number is a
computation. Thus f is undefined in this case.

8.3. Addition of natural numbers is a computable function. To prove this,
consider the machine

M = {gllBgl, QiBRgs, gsIRgs, gsBRqs, gsI Bqs}.

It is left to the reader to show that TM)(mi, m2) = ml + ms.

We are relying on the definition of a computable function and the
equality of the class of computable functions and that of recursive func-
tions to give the reader some "feeling" for the concept of a recursive
function. However, it may be worthwhile to examine the fatter concept
directly. An informal definition of the class of (general) recursive
functions is obtained by adding to the schemes listed in Section 2.2
for generating primitive recursive functions (namely, composition and
primitive recursion) the following:

k(xi, xs, .. , x,) = µyja (xl, x2, .. , , xn, y) = 01,

where the symbol on the right denotes the smallest y such that
a(xi, Xs, ) x,,,y) = 0, assuming that for each (x1, xs, - , x,,) there is
such a y and that a is any primitive recursive function. This is not the
original Herbrand-Godel definition, but one which was proved by
Kleene (1936) to be equivalent to the original. If the assumption that
the symbol on the right is defined for all n-tuples is dropped, the result
is a definition of the (more extensive) class of partial recursive func-
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tions. As is easily imagined, it is a nontrivial matter to show the equality
of the class of computable functions and that of recursive functions and,
more generally, the equality of the class of partially computable func-
tions and that of partially recursive functions. Accepting these results,
along with the Church-Turing thesis, provides us with the precise
concept of computability, or, equivalently, general recursiveness, as a
substitute for the intuitive notion of effective calculability. Thereby, in
turn, the decision problem for a predicate becomes amenable to exact
investigation.

In the terminology of recursive functions, a predicate is called
(primitive) recursive if its characteristic function is (primitive) re-
cursive. If a positive solution of the decision problem for a predicate
is found, the decision problem for that predicate is called recursively
solvable; otherwise the decision problem for the predicate is called
recursively unsolvable.

We conclude this section with the formulation of some other notions
pertaining to formal theories in the language of the theory of recursive
functions. A set of natural numbers is called a recursive set if its char-
acteristic function is recursive. A set S of natural numbers is called
recursively enumerable if either S = 0 or S is the range of a re-
cursive function. It can be shown that a set of natural numbers is re-
cursive if it and its complement are both recursively enumerable. An
example of a set which is recursively enumerable but not recursive can
be effectively constructed. A set S of formulas of a formal theory is
called recursive if the set of natural numbers correlated with the mem-
bers of S by means of a Godel numbering is recursive. The notion of
the recursiveness of a set of formulas of a formal theory can be extended
to that of operations on formulas and relations between formulas. In
terms of recursiveness, the requirements which we specific in Section 1
for formal axiomatic theories may be restated as (i) thet of formulas
must be a recursive set, (ii) the set of axioms must be a recursive set,
and (iii) the rules of inference must determine recursively derivability
relations.

EXERCISES
8.1. Prove that if D TuE and D TMF, then E = F. Deduce that if there

exists a computation of a machine M corresponding to a given input, then it
(and hence the output) is uniquely determined.

8.2. Show that the function f of Example 8.2 is undefined for even arguments.
8.3. Show that the function T$;' defined in Example 8.3 is addition.
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8.4. Let n and i be given integers with 1 < i:5 n. Let M be the Turing
machine consisting of all quadruples of the form

qil Bgsn+i, q,BRq,+,, qsn+,BRq ,

where j ranges over all integers between I and n other than i, together with the
following four quadruples:

qil Bqi, giBRgs+. it qsn+ilRgsn+i, qsn+iBRgi+l.

Show that Tom) is equal to the identity function Ut defined in Section 2.2.

9. Some Undecidable and Some Decidable Theories
The first objective of this section is to sketch a proof of Church's

theorem, which asserts the undecidability of the predicate calculus.
The initial step is the construction of a number-theoretic function which
is not computable. That such functions exist is clear as soon as the
Church-Turing thesis is adopted. For, on the one hand, the set of all
possible Turing machines, and hence the set of all computable functions,
is denumerable. On the other hand, Theorem 2.4.6 implies that the
set of number-theoretic functions is uncountable. Thus, the illustration
is of interest primarily because it is a specific and simple example of
such a function.

A preliminary for this is the arithmetization of the theory of Turing
machines, following the same pattern as that described for first-order
theories in Section 8. The starting point is some assignment, such as
the following, of certain natural numbers to the symbols of the theory:

3 5 7 9 11 13 15 17 19

R L So q, S, qs Ss qs S3

Then, numbers are assigned to expressions in the following way. Let
nl, ng, , ni, be the numbers corresponding to the symbols of an
expression E in the order in which they occur in E. Then to E is as-
signed pi' pa` . p,t` where, as before, pi is the ith prime. Numbers
assigned to symbols and expressions in this way are called the GOdel
numbers of the symbols and expressions. For example, the Godel
number of the quadruple gsBRgs is

218.37.53.717

This method of numbering is a one-to-one mapping on the set of symbols
and formulas of the theory of Turing machines into N.
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By the Godel number of a finite sequence El, E2, , Ek of expressions
we understand the number

m/,0 Pt
C1

.Aa yk
where gi is the Godel number of E; for i = 1, 2, , k. This assignment
determines a one-to-one mapping on the set of finite sequences of ex
pressions into N. In particular, every computation of each Turing
machine has a Godel number and this number uniquely determines the
computation. Finally, Godel numbers can be assigned to Turing machines.
If E,, Es4 , Et is any arrangement of the quadruples of a machine
M, then the Godel number of this sequence is called a Godel number
of M. Although M has a Godel number corresponding to each arrange-
ment of its defining quadruples, each such number uniquely defines
M. It may be noted that there exists an effective procedure for obtain-
ing the Godel number of an expression and for obtaining an expression
from its Godel number.

In order to define the function promised we introduce the predicate

T(m, x, y): m is a Godel number of a Turing machine
M such that the application of M to x is a
computation having Godel number y.

Intuitively this number-theoretic predicate is effectively decidable. For
suppose that values of m, x, and y are given. Upon decomposing m
into a product of primes we can decide whether it is a Godel number
of a machine. If it is not, then the predicate is false for this triple. If m
is a Godel number of a machine M, then we decompose y into a product
of primes and determine whether it is the Godel number of a finite
sequence of expressions. If it is not, then T(m, x, y) is false. If y is the
Godel number of the sequence El, E$, , E. of expressions, then we
compare El with D1 = gllx+l. If El 96 D1, then T(m, x, y) is false. If
E1 = Dl we then "supply" M with D1 as input and compare each suc-
cessive instantaneous description of M which can be formed with the
corresponding E. By making at most n such comparisons, we can deter-
mine whether T(m, x, y) is true or false.

Agreement that T(m, x, y) is effectively decidable implies, via the
Church-Turing thesis, that its characteristic function is computable. A
full treatment of this matter would not make an appeal to the Church-
Turing thesis in order to show the computability of this function;
instead, a direct proof that it is primitive recursive would be given.
Such a proof appears in Chapter 4 of M. Davis (1958).

Each Turing machine determines a partial function of one variable
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in the manner explained prior to Example 8.1. If m is a Godel number
of the machine and x is in the domain of the associated function of one
variable, we shall denote the value of this function at x by tm(x). We
shall also employ this notation for the partial function of two variables
whose domain is the set of ordered pairs (m, x) such that m is a Godel
number of a machine M and x is in the domain of the function of one
variable defined by M. Thus the function tm(x) is defined for given rn

and x if there exists a y such that T(m, x, y). Let us symbolize "there
exists a y such that T(m, x, y)" by

(Ey) T(m, x, y).

Here we intend that the expression "(Ey)" shall symbolize the informal
(and meaningful) phrase "there exists a y such that." Then we may
say that tm(x) is defined if (Ey) T(m, x, y).

Consider now the total function t such that

t(x) = ts(x) + 1 if (Ey) T(x, x, y),
0 otherwise.

[So i(x) = t.(x) + 1 if x is a Godel number of a machine whose appli-
cation to x yields a computation with output t=(x); otherwise, t(x) = 0,)
We contend that t is not computable; the proof is by contradiction,
employing Cantor's diagonal procedure. Assume that t is computable,
Then there exists a machine M with Godel number n, let us say, which
computes it. That is, using the notation agreed upon earlier, there
exists a function t,,, such that t(x) = t (x) for all numbers x. Hence

t(n) = t (n).

Now to say that M computes t implies that for all x there exists a y
such that T(n, x, y) and, in particular, there exists a y such that T(n, n, y),
that is, (Ey) T(n, n, y). Hence, by the definition of t,

t(n) = t,.(n) + 1,

and the two displayed equations furnish the contradiction. We state
this result as our next theorem.

THEOREM 9.1. The total function t defined by

t(x) = l t=(x) + 1 if (Ey) T(x, x, y),
10 otherwise,

is not computable.
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From this result follows easily the undecidability of the predicate
(Ey)T(x, x, y). This is our next theorem.

THEOREM 9.2. The predicate (Ey) T(x, x, y) is undecidable.

Proof. We shall show that the decidability of (Ey) T(x, x, y) implies
the computability of the function t of Theorem 9.1. So assume that
(Ey) T(x, x, y) is decidable-that is, there exists a decision procedure
such that for each x we can decide whether or not (Ey) T(x, x, y). If for
a given x this procedure leads us to the conclusion that (Ey) T(x, x, y),
then we continue the calculation by imitating the application of the
machine with Godel number x (this yields a computation by assump-
tion) to compute t=(x) and, finally, add I to the result. If for the
given x the assumed decision procedure leads to the conclusion that
it is not the case that (Ey) T(x, x, y), then we write 0. Thereby we
have a computation procedure for t.

An alternative formulation of Theorem 9.2 is: The decision problem
for the predicate (Ey) T(x, x, y) is recursively unsolvable. This result is essen-
tially the theorem proved in Church (1936). The only difference is
that we have constructed an example in terms of Turing computability
whereas Church devised one in terms of X-definability.

We continue with an outline of how Church inferred from this
theorem the undecidability of both elementary number theory and the
predicate calculus. A prerequisite for clarity in this matter is the intro-
duction of extensive symbolism. Three kinds of symbols are required:
Symbols of N (formal symbols), symbols which stand as names of formal
symbols (metamathematical symbols), and symbols of intuitive number
theory. The symbols of N consist of the mathematical constants listed
in Example 4.2, the usual logical constants, and a list of individual
variables which we take to be

a,g,C,...,
Formulas of N are certain strings of formal symbols. For example,
(5) a = 6,
(6) (30 (a = 0" c),

(7) (3r) W + a = b)
are formulas of N.

To speak about formulas we shall need metamathematical symbols.
As names for variables we shall use

X, Xl, X2, ' ' ' 3
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and as names for formulas we shall use capital script letters. Further,
we shall use a composite notation such as

(8) 0'(X1, 22, ... , Xn)

instead of "6" for a formula when we are interested in the dependence
of 6' on (distinct) variables XI, x2, , X as well as when a substitution
is to be performed for some of the variables.

Any formula of N can be interpreted as expressing a predicate in
intuitive number theory under the usual number-theoretic meaning of
the symbols. The intuitive predicate corresponding to the formula (8)
we shall denote by
(9) P(xl, x2, ... ,

x are intuitive variables which range over N; we shall
say that x; "corresponds to" the formal variable X;, i = 1, 2, - , n. As
illustrations, formula (6) expresses a is even [if (6) were designated by

then its interpretation would be designated by "E(a)"], and
formula (7) expresses a < b.

A term of N can be interpreted as expressing an intuitive natural
number. The terms 0, 0', 0", , which represent the various natural
numbers under the intended interpretation, are called numerals and
will be abbreviated by the same symbols "0," "1," "2," as we use
for the natural numbers intuitively. If we introduce an italic letter
such as "n" to designate an intuitive natural number, then the cor-
responding boldface italic letter "n" will designate the corresponding
numeral 0'- ' (with n accents).

With these specifications about symbolism, let us get on with some
definitions. An intuitive number-theoretic predicate P(x1, x2, , is

said to be numeralwise expressible in N if there exists a formula
61(91, X2, , [related to the predicate as (8) is to (9) ] with no free
variables other than the distinct variables XI, X2j , x, such that for
each n-tuple (x,, x2, , x,,) of natural numbers,

(10) if P(xl, x2, , is true, then I- 6'(xl, x2, , xn),

and

(11) if P(xi, x2, , is false, then I- --i 6'(xl, x2, ,

For example, it can be shown that the formula (6) numeralwise ex-
presses a < b and that (5) expresses a = b.

The following basic property of primitive recursive predicates first
appeared in G6del (1931).
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LEMMA 9.1. Every primitive recursive predicate is numeralwise
expressible in N.

The following remarks are pertinent to the proof of this result. The
notion of numeralwise expressibility of number-theoretic predicates has
the following analogue for functions. A number-theoretic function
A X17 x2, , x,,) is said to be numeralwise representable in N if there
is a formula Q(21, za, , fin, V) containing no variables free other
than the distinct variables T1, T2, X, , z such that for each n-tuple
(XI, x2) , x,,) of natural numbers, if f(xi, x2, , x, then
B(xl, x2, , x,,, x) is provable and, moreover, the formal analogue of
"there exists a unique x such that P(xj, x2, - , x,., x)" is provable. It
can be proved that every primitive recursive function is numeralwise repre-
sentable in N. The proof is by induction, first showing how to represent
numeralwise the three initial types of functions admissible in a primitive
recursive derivation and then showing how to build up formulas which
numeralwise represent functions obtained from initial functions by
composition and primitive recursion. Lemma 9.1 follows from the
result in italics by an application to the characteristic function of a
primitive recursive predicate.

The theorem whose proof we would like to sketch may be stated as :
If the theory N is consistent, then N is undecidable. However, for technical
reasons, we must settle for a result which is weaker in the sense that
undecidability is inferred from the stronger assumption of w-consistency,
a notion introduced in Godel (1931). The theory N, or one which in-
cludes the symbolism of N, is called w-consistent if for no variable ir
and formula d(z) are all of

(12) -, (X)a(9), a(O), a(1), a(2), -

provable or, in other words, if not both I- -, (z)a(g) and h a(n) for
every natural number n. If N is w-consistent, then it is consistent, for
if N is inconsistent then all formulas, in particular those in (12) for some
9 and a(9), are provable in N. However, the converse is false, so w-con-
sistency is stronger than (simple) consistency.

THEOREM 9.3 (Church). If the theory N is w-consistent, then it
is undecidable; that is, if N is w-consistent, then the decision problem
for N is unsolvable.

Proof. Our point of departure is the result stated earlier without
proof that the predicate T(m, x, y) is primitive recursive. It follows
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that the predicate T(x, x, y) is primitive recursive, so by Lemma 9.1
there exists a formula d(;7, y), having only 3r and y as free variables,
such that
(13) if T(x, x, y) is true, then I- d(x, y),

and
(14) if T(x, x, y) is false, then F d(x, y).
We now define B(x) to be

(3y)a(x, y)
and note that

(15) if (Ey) T (x, x, y) is true, then - 63(x)

and, conversely,

(16) if 63(x), then (Ey) T(x, x, y) is true.

To establish (15) assume that (Ey) T(x, x, y) is true. Then there exists
a y such that T(x, x, y) is true. Applying (13) for x and this y gives
I- a(x, y), so, by the predicate calculus, I- (3y)Ct(x, y). That is,
I- 63(x). To establish (16), assume that y) is false. Then
T(x, x, y) is false for y = 0, 1, 2, - and, hence by (14), I- -, a(x, 0),
h -1 d(x, 1), 1- -i d(x, 2), . It follows from the assumed co-consist-
ency of N that -, (y) -1 d(x, y), and hence (3y)a(x, y) is not provable.
That is, 63(x) is not provable and (16) follows by contraposition.

Using (15) and (16) it is possible to give an indirect proof of the
theorem by showing that the assumptions of both the co-consistency
and decidability of N yield a contradiction. Indeed, assuming that N
is decidable implies that for each x there is a decision procedure for
B(x). If 63(x) is provable, then (Ey) T(x, x, y) is true by (16). If 63(x)
is not provable, then (Ey) T(x, x, y) is false by (15). That is, there is a
decision procedure for (Ey) T(x, x, y) for each x, contrary to Theorem
9.2.

The first step in Church's proof of the undecidability of the predicate
calculus is the translation of N into a theory without the operation
symbols +, , and ' and the individual constant 0. This can be done
in the manner suggested in Example 4.3. Each of the 2-place operation
symbols is replaced by a ternary relation symbol, ' is replaced by a
binary relation symbol, and 0 i4. replaced by a unary relation symbol,
together with an appropriate alteration of the mathematical axioms,
Then the formula B(x) (defined above) transforms into a formula e(R)
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of the pure predicate calculus with equality. The next (and major)
step is the demonstration that an informal proofof (Ey) T(x, x, y) for an x
such that (Ey) T(x, x, y) is true, can be formalized as a deduction from
a suitable finite list of closed statements (independent of v) of the pred-
icate calculus. (To lend plausibility to this step we recall an analogous
result discussed earlier for applied predicate calculi : A theorem of such
a theory can be regarded as a deduction, within the predicate calculus,
from a suitable finite list of assumption formulas.) If 1) is the conjunction
of this set of formulas, this step may be summarized as

(17) if (Ey) T(x, x, y) is true, then D I- e(z) in the predicate calculus.

Further, a metamathematical proof of the converse of (17) can be given :

(18) if 5 I-- e(x) in the predicate calculus, then (Ey) T(x, x, y) is true

By the deduction theorem and its converse, (17) and (18) yield

(19) (Ey) T(x, x, y) is true if I- SD - e(.V) in the predicate calculus.

The theorem in question follows immediately from (19). For if there
were a decision procedure for provability in the predicate calculus with
equality, then applying it for given x to decide whether 5) -' e(x) is
provable, we could decide in view of (19) whether (Ey) T(x, x, y) is true.
But this is contrary to the known undecidability of (Ey) T(x, x, _V).

A similar method of proof yields the undecidability of the predicate
calculus without equality. We record these results, which were obtained
independently by both Church (1936a) and Turing (1936-1937), as our
next theorem.

THEOREM 9.4. The decision problems for the pure predicate
calculus and the pure predicate calculus with equality are unsolvable.

COROLLARY. There is no decision procedure for validity in the
pure predicate calculus.

Proof. This follows from the theorem by way of Theorems 3.3 and 3.4.

Since these initial results of undecidability, the decision problem has
been settled in the negative for a great variety of formalized theories.
Two different methods of attack have been found to be successful. One
of these, which is called the direct method by Tarski (who administers
a "school of undecidability" at Berkeley), is essentially based on ideas
created by Godel (1931) and is applicable to those theories in which
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considerable number-theoretic apparatus can be developed. The proof
of Theorem 9.3, when given in detail, is of this kind.

The other method, called the indirect method by Tarski, consists in
reducing the decision problem for a theory Z, to that for some other
theory Xr2 for which the decision problem has been solved. The proof
of Theorem 9.4 is of this sort. With the indirect method the undecidabil-
ity of a great variety of algebraic theories, including the elementary
theories of groups, rings, fields, and lattices, have been proved.

In order to present concluding remarks about undecidable theories,
several definitions are required. A first-order theory Z, is called a sub-
theory of a first-order theory Z2 if every theorem of Z, is a theorem
of Z2. Under the same circumstances, X-2 is referred to as an extension
of Ti. A first-order theory Z is called essentially undecidable if Z is
undecidable and the same holds true of every consistent extension of Z
which has the same constants as Z. Some undecidable theories have
decidable extensions. For example, the predicate calculus with equality
becomes a decidable theory upon adding as an axiom

(x) (y) (X = y)

On the other hand, in Rosser (1936) it is proved not only that if the
theory N is consistent then it is undecidable (thereby strengthening
Theorem 9.3) but that it is essentially undecidable.

The next definition requires a preliminary remark. For the most part,
our discussion of first-order theories has included the assumption either
implicitly or explicitly that they are axiomatic theories. However, it is
possible to formulate first-order theories without a set of mathematical
axioms. In that event the notion of theorem is replaced by that of
valid statement. No uniform method for defining this notion is avail-
able. The only general condition which such a definition should fulfill
is that any statement that is derivable from valid statements by the
rules of inference should be a valid statement. Sometimes it is agreed
to consider as valid those and only those statements which are true in a
given model. A first-order theory Z in which validity has been defined
in some way is said to be axiomatizable if there exists a recursive set S
of valid statements of Z such that every valid statement is derivable
from the set S; if S is finite, then Z is said to be finitely axiomatizable.
Thus, every axiomatic theory is axiomatizable in the sense just defined,
and every axiomatizable theory can be represented as an axiomatic
theory.

There are numerous interrelations among the notions which we now
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have available for first-order theories. We shall content ourselves with
the following, all of which are to be found in Tarski, Mostowski, and
Robinson (1953).

THEOREM 9.5 . For a negation complete first-order theory T, the
following three conditions are equivalent : (i) T is undecidable,
(ii) Z is essentially undecidable, (iii) Z is not axiomatizable.

Proof. The result that (i) implies (iii) for a complete theory is a
consequence of a result due to Kleene (1943). The remaining parts
of the theorem follow directly from the definitions of the notions
involved.

THEOREM 9.6. A first-order theory Z is essentially undecidable
iff Z is consistent and no negation complete extension of Z which
has the same constants as Z is axiomatizable.

The necessity of the condition follows immediately from Theorem 9.5
and the definitions of the concepts involved. A proof of the sufficiency
of the condition is given (in the book just mentioned) in the following
equivalent form.

THEOREM 9.7. Every consistent and decidable first-order the-
ory T has a consistent, negation complete, and decidable extension
T' which has the same constants as Z.

We turn now to a brief survey of decidable theories. From Theorem 9.5
one can infer that a complete and axiomatizable first-order theory is de-
cidable. This provides the justification for our earlier statement that
each of the theories defined in Examples 7.1-7.4 is decidable. More gen-
erally, any first-order theory Z which satisfies the hypotheses of Vaught's
theorem (Theorem 7.7) and, in addition, is axiomatizable, is decidable.
If it is assumed that Z is finitely axiomatizable, as well as categorical
in power a for some infinite cardinal c greater than or equal to the
number of formulas of Z, then the decidability of Z follows. This result
is due to Henkin (1955). This is a modification of Vaught's theorem in
the sense that it is not required that all models of Z be infinite. From
Henkin's result it follows that the theory considered in Example 7.3 is
still decidable when the requirement that all' models be infinite is
dropped (since this theory is finitely axiomatizable).

In Tarski (1951) is presented a decision method for elementary
algebra, which is that part of the theory of real numbers which can be
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formalized as a first-order theory. Roughly speaking, this restricts one
to the portion of the general theory of real numbers which can be
formulated and established without the help of any set-theoretical
devices. For instance, the variables in elementary algebra always stand
for arbitrary real numbers and cannot be supposed to take values in
specific sets (such as the set of integers) of real numbers. From the
decidability of elementary algebra Tarski inferred the decidability (via
the introduction of a coordinate system) of that part of traditional
geometry which can be formalized as a first-order theory. This includes
most of elementary geometry in the everyday meaning of the term.

In. conclusion we mention that from a result of M. Presburger (1930)
metamathematical proofs of consistency and completeness, and a decision
procedure, can be given for the first-order theory obtained from ele-
mentary number theory by omitting the formation rules and axioms
for . In other words, this theory is the elementary theory of addition
for natural numbers.

10. Godel's Theorems
The theorems in question are the two main results in Godel's paper

of 1931. We shall designate them as "Godel's first theorem" and "Godel's
second theorem." In rough terms, the first theorem (which is often
referred to simply as "Godel's theorem") asserts for any formal theory
T rich enough to include all the formulas of formalized elementary
number theory (that is, all formulas of N) that if it is consistent, then
it is (negation) incomplete. Defining a closed formula S of a formal
theory as an undecidable formula if neither S nor its negation is a
theorem, the theorem asserts, alternatively, the existence of undecidable
formulas in Z if Z is consistent. Godel's second theorem, which is a.
corollary of the other, asserts the impossibility of proving the consistency
of Z by methods "formalizable within the theory," where the qualifying
clause in quotation marks has a technical meaning which we shall
discuss later.

On account of their great importance for the whole program of
metamathematics, it is worthwhile to sketch Godel's original proofs and
then outline a later proof of his first theorem and a generalization of il,
based on Church's theorem. To simplify the presentation we shall
restrict our attention principally to the theory N.

Godel's proof of his first theorem, as he himself pointed out, is modeled
on the reasoning involved in the logical antinomy known as the Richard
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paradox, devised by the French mathematician J. Richard in 1905. To
discuss this antinomy, which deals with the notion of finite definability,
we consider the English language with (i) the 26 Latin letters, the
comma, and the blank space as alphabet, (ii) a preassigned dictionary,
and (iii) a preassigned grammar. By an "expression" in this language
we understand any finite sequence of these 28 symbols not beginning
with a blank space. The set of expressions is denumerable; an enumera-
tion can be given by, for example, specifying that expression E, pre-
cedes expression E; if E; contains fewer symbols than does E, and, if
they contain the same number of symbols, then precedence is deter-
mined by lexicographic ordering. Upon striking from the specified
enumeration of all expressions those which do not define an arith-
metic property of natural numbers, we obtain an enumeration (say,
E0, E,, E2, ) of those which do. Then, for arbitrary numbers n and p,
one of the following cases must occur:

(i) n possesses the property determined by E, or, more simply,
Ep is true for n, in which case we write t= E,(n);

(ii) E, is not true for n, in which case we write -1 t= E,(n).

Now consider the expression "the natural number n does not have the
property determined by the expression which corresponds to n in the
enumeration Eo, El, E2, ." The mention in this expression of the
enumeration Eo, E,, E2, can be replaced by an explicit definition of
it, and if this replacement is made the result is an expression in terms of
the given alphabet which defines a property of natural numbers. Hence,
there is a q such that the quoted expression is E0. On the other hand, the
same expression may be symbolized by n t= E (n). Thus, there exists a
q such that for each n, t= EQ(n) iff --it= EE(n). Setting n = q we obtain
the contradiction

t= EQ(q) if --i t= EQ(q)

Godel's proof that if N is consistent then it is incomplete may be
described (with some oversimplification) as the determination of a
statement of N which behaves like the quoted expression above with
respect to provability; that is, it has the quality that it is provable if its
negation is provable. To this end, Godel created the ingenious device,
which we described earlier, of an arithmetization of the metalanguage
of N. Then he constructed the crucial sentence to be one which, inter-
preted by a person who knows the enumeration, asserts its own un-
provability.
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The proof of the original form of GSdel's first theorem hinges on the
next lemma, for which we introduce the following notation. Relative
to any specified Godel numbering, for any n which is the Godel num-
ber of a formula, let "e." designate the formula. If it is desirable to
indicate that this formula contains a free variable z, we may also write
C. as "e (z).

LEMMA 10.1. There is a Godel numbering of the formal symbols
of N such that the predicate A(x, y) defined by

A(x, y) : x is the Godel number of a formula e,(z) and
y is the Godel number of a proof of the formula C .(x)

is numeralwise expressible in N.

The proof consists of showing that the predicate A (x, y) is primitive
recursive and then applying Lemma 9.1.

Let a(x, y) be a particular formula which numeralwise expresses
A(x, y) for the Godel numbering employed in the lemma, so that if
A(x, y) is true, then I- a(x, y), and if A(x, y) is false, then I- -, a(x, y). f
Now consider the formula

(1) -t (3y)a(z, y),
which contains x and no other variable free. Let p be the Godel number
of (1). Then (1) is the same as the formula that we have agreed to
designate as Since this formula expresses the metamathematical
statement that there is no proof of e .(x), the closed formula

(2) -, (3y)a(p, y),
which is C ,(p), expresses the statement that there is no proof of ep(p).
That is, (2) expresses its own unprovability. The formal counterpart of
this is the first part of the next theorem.

THEOREM 10.1(Godel's first theorem in the original form). If N
is consistent, then C,(p) is unprovable, and if N is w-consistent, then
-'e,,(p) is unprovable. Thus, if N is w-consistent, then it is negation
incomplete, with C,(p) as an example of an undecidable formula.
t Electing as we have to outline Godel's original proof leads to some duplication of results

stated in Section 9. Indeed, instead of introducing the predicate A(x, y), we could continue
with the predicate T(x, x, y). It is because of this fact that we have chosen the same designa-
tion for a formula which numeralwise expresses A(x, y) as we did for a formula which ex-
presses T(x, x, y). Further, we call attention to the fact that formula (1), in the symbolism
of Section 9, is -iB(T).
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Proof. To establish the first assertion we assume that N is consistent
and that C,(p) is provable, and derive a contradiction. The provabil-
ity of (2) implies the existence of a proof of it; let k be the Godel
number of some proof. Then A(p, k) is true and, in turn, I- a(p, k).
Hence, by the predicate, calculus, I- (3y)a(p, y), that is, -, a (p) is
provable. This contradicts the assumed consistency of N.

To prove the second assertion, assume that N is w-consistent. Then
N is consistent, and hence, by the foregoing, C,(p) is unprovable.
This implies that no natural number is the Godel number of a proof
of en(p); that is, for every natural number n, A(p, n) is false. Hence,
for every natural number n, I- -, ct(p, n). But then the assumed
w-consistency of N implies that -, (y) -, U(p,y) is unprovable. By the
predicate calculus it follows that -, C ,(p) is unprovable.

Rosser (1936), using a more complicated example of an undecidable
formula, proved that consistency alone implies the incompleteness of N.
We state this as

THEOREM 10.2 (Rosser's form of Godel's first theorem). If N is
consistent, then it is negation incomplete.

It was this form of the theorem that we had in mind when describing
the heuristic motivation. We have emphasized the original form of the
theorem because the proof is intuitively simpler. The example of an
undecidable formula which Rosser's proof employs may be interpreted
as asserting that for any proof of it there exists a proof of its negation
with an equal or smaller Godel number. With the help of the same
formula the hypothesis of Theorem 9.3 can also be simplified to "If N
is consistent."

Next we shall sketch the derivation of Godel's second theorem from
Theorem 10.1. We begin by assuming that there exists an informal
proof of the consistency of N. If to this we append the proof which we
gave-that the unprovability of e ,,(p) follows from the consistency of
N-the composite proof will be one of the unprovability of C,(p) from
scratch. Upon replacing the symbols and formulas of N in this proof
by their Godel numbers, it could be transformed into one, in informal
number theory. Now we ask whether this proof in informal number
theory could be formalized in N. If it could, then the formula e ,(p)
would itself be the formalized version of the resulting theorem, that is,
that G;(p) is unprovable. Thus, a formal proof that G,(p) is unprovable
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would be a formal proof of ep(p). By Theorem 10.1 such a proof cannot
exist if N is consistent. That is, if N is consistent, then a formal proof
within N having the form of (i) a proof of the consistency of N extended
by (ii) a proof of the unprovability of ep(p) if N is consistent, does not
exist. By showing that part (ii) does exist, we have a method of showing
that part (i) does not; that is, there exists no proof within N of the con-
sistency of. N, if N is consistent.

To make the foregoing argument convincing, the first step is to
devise a formula of N which expresses the consistency of N. (This is
an easy matter for one who is familiar with the technique of Godel
numbering of formulas.) Let us call one such formula, "Consis." The
second step is the formalization in N, via the Godel numbering, of the
metamathematical proof of "N is consistent implies that Cp(p) is un-
provable." [This is a long and tedious affair; an account is given in
Hilbert and Bernays (1939).] The result is 1- Consis -a C,(p). Finally,
the following metamathematical proof by contradiction is supplied.
Suppose that I- Consis. Then, by the statement calculus, we infer that
F- e,(p). But this is impossible by Theorem 10.1 if N is consistent.
Hence not F- Consis. We state this result as

THEOREM 10.3 (Godel's second theorem). If N is consistent,
then there is no proof of its consistency by methods formalizable
within the theory.

Since we have already discussed the significance of consistency the-
orems for Hilbert's program of metamathematics, we shall merely add
a few further remarks at this point. According to Theorem 10.1, the
formulation of elementary number theory that we have given is not
adequate to ensure that every formula or its negation can be deduced
by explicitly stated rules from explicitly stated axioms. It is natural to
ask if this deficiency could not be corrected by extending the set of
axioms. For instance, if the formula C,(p) were adjoined as an axiom,
then Theorem 10.1 would have no significance. Godel proved that
completeness cannot be achieved in this way. The pertinent result is
as follows. So long as the axioms of N are extended by a set of formulas
whose Godel numbers constitute a recursive set, the resulting theory is
incomplete if it is consistent. As for extensions of N with sets of axioms
whose Godel numbers do not form a recursive set, they are unacceptable
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since there is then no effective procedure for deciding whether a given
formula is an axiom. f

Theorem 10.1 demonstrates the incompleteness of N in another sense,
namely, that there are expressible in it statements which are true on
finitary grounds but unprovable formally. The formula e ,(p) serves to
bear this out.

The consistency of N can be proven using transfinite induction up
to a sufficiently great ordinal. This was shown by G. Gentzen (1936,
1938).

We conclude this section with the proof of a generalized form of
Godel's first theorem. Results of this sort, which rely on the Church-
Turing thesis, are due to Kleene (1936, 1943). As background we recall
that in the proof of Theorem 9.3 there was introduced a formula 03(9)
of N corresponding to the predicate (Ey) T(x, x, y) such that h (B(x)
iff (Ey) T(x, x, y) is true. The theorem which we shall present is applic-
able to first-order theories in which there can be found a formula which
"expresses" (Ey) T(x, x, y) in essentially this way.

THEOREM 10.4. Let Z be a first-order theory which includes
enough of the symbolism of N so there can be found a formula a(g)
such that, for each natural number x, (i) if I- B(x), then (By) T(x, x, y)
is true, and (ii) if f- -' B(x), then (Ey) T(x, x, y) is false. Then there
exists a number q such that (Ey) T(q, q, y) is false and neither B(q)
nor -1 B(q) is provable.

Proof. With X a first-order theory, there is an effective procedure
for listing its proofs. Assuming, as we are, that contains a formula
B(9) having properties (i) and (ii), we can set up the following com-
putation procedure. Given x, search in order through the proofs of Z
for one of -, B(x) and, if such a proof is found, write 0.

By the Church-Turing thesis there exists a Turing machine M
with Gddel number q, let us say, to carry out this procedure. Now
apply M to q as argument. Then {- --i B(q) iff M applied to q com-
putes a value. Since by the definition of (Ey) T(q, q, y), M applied to
q computes a value if (Ey) T(q, q, y) is true, it follows that

(3) (Ey) T(q, q, y) is true if f- -, B(q).
t Actually axiom sets which are only recursively enumerable are acceptable since it is

known that if a theory has a recursively enumerable axiomatization, then it has a recursive
axiomatization.
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Now assume that 1- -1 (q). Then, by assumption (ii), (Ey) T(q, q, y)
is false, and hence, by (3), -1 03(q) is not provable, contradicting our
assumption. So by reductio ad absurdum - (B(q) is not provable. In
turn, it follows from (3) by contraposition that (Ey) T(q, q, y) is false.
In turn, by assumption (i) 63(q) is not provable.

11. Some Further Remarks about Set Theory

It should be clear that Zermelo-Fraenkel set theory (Chapter 7) can
be formalized as a first-order theory having only one mathematical
constant, namely, the two-place relation symbol E. Indeed, the axioms
and axiom schemas are stated in Chapter 7 in a form which makes
their translation into symbols form a routine matter. The von Neumann-
Bernays-Godel theory of sets can also be formalized as a first-order
theory with the same relation symbol as its only mathematical constant.
This may be done by admitting class variables X, Y, Z, , along with
set variables x, y, z, - and including as prime formulas (in addition to
those of the form xCx,xCy, ,yCz),xCX,xCY, ,j'CZ,

. Set variables are tacitly assumed to range over individuals of a
special kind, called sets, and therefore the corresponding quantifiers,
such as (x) and (3x) must be interpreted as abbreviations for (x) (S(x) -,

.) and (3x) (S(x) A . . . ), respectively. Here the predicate S can be
taken to be defined by

S(x) H (3X)(x E X).

The only existing results pertaining to the consistency of these two
theories are of a relative nature. In Godel (1940) it is proved that if
von Neumann set theory without the axiom of choice is consistent, then
consistency is preserved when the axiom of choice as well as Cantor's
generalized continuum hypothesis are adjoined as axioms. This is, in
other words, a proof of the relative consistency of the axiom of choice
and the generalized continuum hypothesis with the other axioms of
von Neumann's set theory. Results concerning the relative "strengths"
of these two theories of sets with their respective axioms of choice
neglected have been obtained. In I. L. Novak (1950) and Rosser and
Wang (1950) it is proved that von Neumann set theory is relatively
consistent to Zermelo-Fraenkel set theory; that is, if Zermelo-Fraenkel
set theory is consistent, then so is, the von Neumann theory. In the same
paper Rosser and Wang prove that any theorem of von Neumann set
theory which involves only set variables is a theorem of Zermelo-Fraenkel
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set theory. Taking these two results into account, Rosser and Wang
conclude that the two theories are of "essentially equal strength."

If the set theories under consideration are consistent, then they are
incomplete. This conclusion is a consequence of Godel's first theorem,
since elementary number theory can be derived within each of them.
In turn, it follows that neither theory is categorical. This is also a direct
consequence of the existence of an infinite model for each theory.
Finally, since elementary arithmetic is essentially undecidable and can
be developed in both theories, if they are consistent then they too are
essentially undecidable. The von Neumann theory, being finitely ax-
iomatizable, thereby establishes the existence of essentially undecidable
and finitely axiomatizable theories.

In conclusion we shall discuss Skolem's paradox for Zermelo-Fraenkel
set theory. We choose this theory of sets because we have given its
axioms; the paradox applies equally well to von Neumann set theory.
From the assumption that Zermelo-Fracnkel set theory, which we shall
symbolize Cam, is consistent, it follows, using results appearing in Section 6,
that ( has a model whose domain D is a countable set. From the ob-
servations made at the end of Section 7.2, the axioms rule out the pos-
sibility that D is finite, and consequently D is denumerable. But one
axiom of ( postulates the existence of an infinite set and another the
existence corresponding to any set, of a set which includes all subsets of
that set. From Cantor's theorem there follows the existence of an un-
countable set of sets. In summary, e is a theory which, on the one hand,
has a denumerable model and, on the other hand, contains a theorem
which asserts the existence of uncountably many sets. This is Skolem's
paradox (1922-1923).

An explanation of sorts can be given. We begin with the observation
that within e5 one can define only those subsets of a given set which
can be constructed by operations or singled out in the set by properties
(in other words, predicates). Now the basic operations for set formations,
together with the processes for constructing predicates which are pro-
vided by the axioms, are countable in number; hence their iteration
provides the means for defining only a denumerable collection of sub-
sets of a given set. Thus it appears possible to have a denumerable
model of Cam.

Now suppose that 9)1 is such a model and that D is its domain. Further,
let x be the set of all subsets of some infinite set defined in e. Since an
enumeration of the elements of D can be given, there is an enumeration
f of those elements of D which represent the elements of x within the
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model 9J2. One escape from an outright contradiction at this point is
for it to turn out that the enumeration f, which (being a function) is a
set, is not definable within e. That is, we are suggesting the possibility
of the set x of all subsets of a given infinite set definable within t being
denumerable from without a while being uncountable within e, because
no enumeration is among the sets definable with S.

If we accept this "explanation" of Skolem's paradox, then we are
faced with the following alternatives. One is that any axiomatization
of set theory as a first-order theory must fail to capture fully the notions
of the set of subsets of a given set, one-to-one correspondence, and un-
countability. Consequently, these concepts must be given a prior status
independent of axiomatic theories. If this conclusion is disagreeable (as
it may well be in view of the classical set-theoretic paradoxes), then we
must be content with the set theory which can be explicitly character-
ized within the framework of first-order theories. This brings us to the
second alternative. Set-theoretic notions such as uncountability must be
accepted as relative in nature; a set which is uncountable in a given
axiomatization may prove to be denumerable in another. In brief,
such a notion as absolute uncountability is nonexistent. This relativiza-
tion of set theory was proposed by Skolem.

Finally, we mention another explanation of Skolem's paradox: There
is no collection of objects which satisfies the axioms of e. This would
imply the inconsistency of S and hence the existence of a contradiction
within S. As yet, one has not been found.

BIBLIOGRAPHICAL NOTES
Sections 1-3. There exist a great variety of formulations of the statement

calculus as an axiomatic theory. Those of the first-order predicate calculus are
not as numerous. In this connection A. Church (1956) should be consulted. For
extended treatments of the statement calculus and the predicate calculus there
are several excellent texts available. In addition to the book by Church just
cited we mention those by S. C. Kleene (1952), Rosser (1953), and Hilbert and
Ackermann (1950). Even better than the English edition of Hilbert and Acker-
mann is the third German edition (1949).

Section 4. A concise description of first-order theories appears in A. Tarski,
A. Mostowski, and R. M. Robinson (1953). A variety of algebraic systems,
formulated as first-order theories, appears in A. Robinson (1951) and A. Robin-
son (1956).

Section 5. The magnum opus of the Hilbert school of formalism is Hilbert
and Bernays (1934, 1939). Less comprehensive but adequate accounts of meta-
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mathematics appear in Kleene (1952) and A. A. Fraenkel and Y. Bar-Hillel
(1958).

Section 6. This section is essentially an account of Henkin's paper of 1949.
Many of the definitions and theorems also appear in Church (1956). For an
account of some applications of Henkin's principal theorem to problems in
modern algebra, see Henkin (1953).

Section 7. Church (1956) and Kleene (1952) were used as references for
this section. Although the idea of nonstandard models of a theory originated
with Skolem, Henkin was the first to investigate them in a systematic way. For
this see Henkin (1947) and (1950) or the account in Church (1956).

Sections 8-9. Self-contained and complete accounts of the material dis-
cussed in these sections are to be found in Kleene (1952) and, from a somewhat
different viewpoint, in M. Davis (1958). An informative and nontechnical
account of Turing machines and recursive functions appears in H. Rogers, Jr.
(1959). For proofs of the undecidability of a variety of algebraic theories, see
Tarski, Mostowski, and Robinson (1953).

Section 10. A complete account of Godel's theorems and their conse-
quences is given in Kleene (1952). Another high-level development is given in
Mostowski (1952). For semitechnical accounts, see Rosser (1939) and G. Kreisel
(1952-1953). For a semipopular account, see E. Nagel and J. Newman (1958).
Our presentation draws on that which appears in mimeographed notes entitled
Sets, Logic, and Mathematical Foundations by Kleene.
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SYMBOLS AND NOTATIONS

Symbol Page Symbol Page
2 f:X--Y 35

9, 2 Yx 35
$ 2 ix 36

2 f/A 36

7+ 2 nx 37

2 XA 37
2 X" 37

xCA 4 gof 38
x1, x2, ,xxCA 4 f-1 41

x Q A 4 Va 43
(xl) X2, , 5 na 44
{xIP(x) } 7 N 45
(xCAIP(x)} 8 X(A11C1) 47
ACB 9 lub A 53
B2A 10 g1bA 53
ACB 10 D,x 59
0 11 ACB 79
6'(A) 11 7 80

A U B 12 card A 80

A(B 13 AB 81
13 A<B 82

X-A 13 940 85
A+B 13 14 92
(x, y) 24 x ft, Y 98
(zi, xg, , xn) 25 w 99
b, 26 a* 101

26 s(a) 106

.x x Y 26 R. 120

1x 26 9(A) 121

[A] 26 x Nay 133
31 [x]; 134

IP 31 x'- y 138
35 [x], 139
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Symbol Page Symbol Page

x icy 146 x+ 298

[x]t 149 ord a 311

-, p 162 Zy 331

P A Q 162 (G:H) 339

PvQ 162 I- A 377

P--+ Q 162 Pi- A 377
P+-+ Q 162 D(r, A) 377
T 164 A,,A2, ,A. B 379
F 164 V A 392

K A 172 N 397

A eq B 173 DT ME 432
A,, As, ... , A. K B 180 T(m, x, y) 437

(Vx) 195 (Ey) 438

(3x) 196 A(x,y) 448
B/I 265
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developed by U.S. Air Force Academy.. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 455pp. 5% x 8%. 0-486-60061-0

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced stu-
dents of ground water hydrology, soil mechanics and physics, drainage and irrigation
engineering and more. 335 illustrations. Exercises, with answers. 784pp. 6% x 9%.

0-486-65675-6

THEORY OF VISCOELASTICITY (Second Edition), Richard M. Christensen.
Complete consistent description of the linear theory of the viscoelastic behavior of
materials. Problem-solving techniques discussed. 1982 edition. 29 figures.
xiv+364pp. 6% x 9%. 0-486-42880-X

MECHANICS, J. P. Den Hartog. A classic introductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8%. 0-486-60754-2

MECHANICAL VIBRATIONS, J. P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations to a variety of
practical industrial engineering problems. Numerous figures. 233 problems, solu-
tions. Appendix. Index. Preface. 436pp. 5% x 8'%. 0-486-64785-4

STRENGTH OF MATERIALS, J. P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, etc.) plus advanced material on engineering
methods, applications. 350 answered problems. 323pp. 5% x 8%. 0-486-60755-0

A HISTORY OF MECHANICS, Rene Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%. 0-486-65632-2

STABILITY THEORY AND ITS APPLICATIONS TO STRUCTURAL
MECHANICS, Clive L. Dym. Self-contained text focuses on Koiter postbuckling
analyses, with mathematical notions of stability of motion. Basing minimum energy
principles for static stability upon dynamic concepts of stability of motion, it devel-
ops asymptotic buckling and postbuckling analyses from potential energy considera-
tions, with applications to columns, plates, and arches. 1974 ed. 208pp. 534 x 8%.

0-486-42541-X

METAL FATIGUE, N. E. Frost, K.J. Marsh, and L. P. Pook. Definitive, clearly writ-
ten, and well-illustrated volume addresses all aspects of the subject, from the histori-
cal development of understanding metal fatigue to vital concepts of the cyclic stress
that causes a crack to grow. Includes 7 appendixes. 544pp. 5% x 8%. 0-486-40927-9
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ROCKETS, Robert Goddard. Two of the most significant publications in the history
of rocketry and jet propulsion: "A Method of Reaching Extreme Altitudes" (1919) and
"Liquid Propellant Rocket Development" (1936). 128pp. 53A x 8%. 0-486-42537-1

STATISTICAL MECHANICS: PRINCIPLES AND APPLICATIONS, Terrell L.
Hill. Standard text covers fundamentals of statistical mechanics, applications to fluc-
tuation theory, imperfect gases, distribution functions, more. 448pp. 5% x 8%.

0-486-65390-0

ENGINEERING AND TECHNOLOGY 1650-1750: ILLUSTRATIONS AND
TEXTS FROM ORIGINAL SOURCES, Martin Jensen. Highly' readable text with
more than 200 contemporary drawings and detailed engravings of engineering pro-
jects dealing with surveying, leveling, materials, hand tools, lifting equipment, trans-
port and erection, piling, bailing, water supply, hydraulic engineering, and more.
Among the specific projects outlined-transporting a 50-ton stone to the Louvre, erect-
ing an obelisk, building timber locks, and dredging canals. 207pp. 8% x 11%.

0-486-42232-1

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 0-486-65067-7

PROTECTION OF ELECTRONIC CIRCUITS FROM OVERVOLTAGES,
Ronald B. Standler. Five-part treatment presents practical rules and strategies for cir-
cuits designed to protect electronic systems from damage by transient overvoltages.
1989 ed. xxiv+434pp. 6% x 9%. 0-486-42552-5

ROTARY WING AERODYNAMICS, W. Z. Stepniewski. Clear, concise text cov-
ers aerodynamic phenomena of the rotor and offers guidelines for helicopter perfor-
mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 614 x 9'%.

0-486-64647-5

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of
coordinates. Bibliography. Index. 352pp. 5% x 8%. 0-486-65113-4

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent
historical survey of the strength of materials with many references to the theories of
elasticity and structure. 245 figures. 452pp. 5% x 8%. 0-486-61187-6

ANALYTICAL FRACTURE MECHANICS, David J. Unger. Self-contained text
supplements standard fracture mechanics texts by focusing on analytical methods for
determining crack-tip stress and strain fields. 336pp. 6% x 9%. 0-486-41737-9

STATISTICAL MECHANICS OF ELASTICITY, J. H. Weiner. Advanced, self-
contained treatment illustrates general principles and elastic behavior of solids. Part
1, based on classical mechanics, studies thermoelastic behavior of crystalline and
polymeric solids. Part 2, based on quantum mechanics, focuses on interatomic force
laws, behavior of solids, and thermally activated processes. For students of physics
and chemistry and for polymer physicists. 1983 ed. 96 figures. 496pp. 5% x 8%.

0-486-42260-7
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Mathematics
FUNCTIONAL ANALYSIS (Second Corrected Edition), George Bachman and
Lawrence Narici. Excellent treatment of subject geared toward students with back-
ground in linear algebra, advanced calculus, physics and engineering. Text covers
introduction to inner-product spaces, normed, metric spaces, and topological spaces;
complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and
many other related subjects. 1966 ed. 544pp. 616 x 9%. 0-486-40251-7

ASYMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of sci-
entific disciplines. New preface. Problems. Diagrams. Tables. Bibliography. Index.
448pp. 5% x 8'%. 0-486-65082-0

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. I. Borisenko
and I. E. Tarapov. Concise introduction. Worked-out problems, solutions, exercises.
257pp. 556 x 8'%. 0-486-63833-2

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8'b. 0-486-65942-9

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8'6. 0-486-65973-9

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions. New preface and appendix. 288pp. 5% x 8'6. 0-486-61471-9

ASYMPTOTIC METHODS IN ANALYSIS, N. G. de Bruijn. An inexpensive, com-
prehensive guide to asymptotic methods-the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8'% 0-486-64221-6

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory-plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms;
Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends.
512pp. 5% x 831. 0-486-64670-X

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8%. 0-486-65191-6

RIEMANN'S ZETA FUNCTION, H. M. Edwards. Superb, high-level study of
landmark 1859 publication entitled "On the Number of Primes Less Than a Given
Magnitude" traces developments in mathematical theory that it inspired. xiv+315pp.
5% x 851. 1 0-486-41740-9
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CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8%.

0-486-64856-7

COMPLEX VARIABLES, FrancisJ. Flanigan. Unusual approach, delaying complex
algebra till harmonic functions have been analyzed from real variable viewpoint.
Includes problems with answers. 364pp. 5% x 8%. 0-486-61388-7

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.
Graduate-level text covers variations of an integral, isoperimetrical problems, least
action, special relativity, approximations, more. References. 279pp. 5% x 8%.

0-486-65499-0

COUNTEREXAMPLES IN ANALYSIS, Bernard R. Gelbaum and John M. H.
Olmsted. These counterexamples deal mostly with the part of analysis known as
"real variables." The first half covers the real number system, and the second half
encompasses higher dimensions. 1962 edition. xxiv+198pp. 5% x 8%. 0-486-42875-3

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincare, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii + 666pp. 6% x 9%.

0-486-67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8%.

0-486-65084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8'%. 0-486-65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8%. 0-486-65363-3

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden's theorem, the Landau-Schnirelmann hypothesis and Mann's
theorem, and a solution to Waring's problem. Solutions included. 64pp. 53/. x 8'/,.

0-486-40026-3

THE PHILOSOPHY OF MATHEMATICS: AN INTRODUCTORY ESSAY,
Stephan KSrner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning
propositions and theories of applied and pure mathematics. Introduction. Two
appendices. Index. 198pp. 5% x 8%. 0-486-25048-2
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INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S. V. Fomin. Translated
by Richard A. Silverman. Self-contained, evenly paced introduction to real and func-
tional analysis. Some 350 problems. 403pp. 5% x 8'l. 0-486-61226-0

APPLIED ANALYSIS, Cornelius Lanczos. Classic work on analysis and design of
finite processes for approximating solution of analytical problems. Algebraic equa-
tions, matrices, harmonic analysis, quadrature methods, much more. 559pp. 534 x 8'/..

0-486-65656-X

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers "abstract algebra": sets and numbers, theory of groups, the-
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8'6.

0-486-65940-2

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathemati-
cians covers classical differential equations as well as topological dynamics and
ergodic theory. Bibliographies. 523pp. 5% x 8'%. 0-486-65954-2

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants. Includes
exercises. 237pp. 5% x 8'6. 0-486-66810-X

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous functions,
Riemann integration, multiple integrals, more. Wide range of problems. Under-
graduate level. Bibliography. 254pp. 5% x 8%. 0-486-65038-3

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. "... a welcome contribution
to the existing literature...."-Math Reviews. 490pp. 5% x 8%. 0-486-64232-1

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of lin-
ear equations and related topics such as determinants, eigenvalues and differential
equations. Numerous exercises. 432pp. 51 x 81l. 0-486-66014-1

LINEAR ALGEBRA, Georgi E. Shilov. Determinants, linear spaces, matrix alge-
bras, similar topics. For advanced undergraduates, graduates. Silverman translation.
387pp. 5% x 8'%. 0-486-63518-X

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number system, point sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp. 5% x 8'!. 0-486-65385-4

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 8'b. 0-486-63829-4
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TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8'b. 0-486-63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8'h. 0-486-64940-7

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%. 0-486-64828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8'l. 0-486-63317-9

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural
numbers; complete induction; limit and point of accumulation; remarkable curves;
complex and hypercomplex numbers, more. 1959 ed. 27 figures. xii+260pp. 5% x 8'%.

0-486-63317-9

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian's lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 edi-
tion. ix + 283pp. 5% x 8'%. 0-486-67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8'/. 0-486-63069-2

THE CONTINUUM: A CRITICAL EXAMINATION OF THE FOUNDATION
OF ANALYSIS, Hermann Weyl. Classic of 20th-century foundational research deals
with the conceptual problem posed by the continuum. 156pp. 5% x 8'4.

0-486-67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and I. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8'%. Two-vol. set.

Vol. I: 0-486-65536-9 Vol. II: 0-486-65537-7

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E. C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8'%. 0-486-65251-3

THE THEORY OF GROUPS, HansJ. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstrates their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group
theory, more. 276pp. 5% x 8''h. 0-486-40922-8
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Math-Decision Theory, Statistics, Probability
ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8'1. 0-486-65218-1

STATISTICS MANUAL, Edwin L. Crow et al. Comprehensive, practical collection
of classical and modern methods prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8'lz. 0-486-60599-X

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory and design of sampling techniques for social scientists, industrial
managers and others who find statistics important at work. 61 tables. 90 figures. xvii
+602pp. 5% x 8'6. 0-486-64684-X

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modem welfare eco-
nomics, Leontief input-output, more. 525pp. 5% x 8Y,. 0-486-65491-5

PROBABILITY: AN INTRODUCTION, Samuel Goldberg. Excellent basic text
covers set theory, probability theory for finite sample spaces, binomial theorem,
much more. 360 problems. Bibliographies. 322pp. 5% x 811. 0-486-65252-1

GAMES AND DECISIONS: INTRODUCTION AND CRITICAL SURVEY,
R. Duncan Luce and Howard Raiffa. Superb nontechnical introduction to game the-
ory, primarily applied to social sciences. Utility theory, zero-sum games, n-person
games, decision-making, much more. Bibliography. 509pp. 5% x 8'%. 0-486-65943-7

INTRODUCTION TO THE THEORY OF GAMES, J. C. C. McKinsey. This com-
prehensive overview of the mathematical theory of games illustrates applications to
situations involving conflicts of interest, including economic, social, political, and
military contexts. Appropriate for advanced undergraduate and graduate courses;
advanced calculus a prerequisite. 1952 ed. x+372pp. 5% x 8'l,. 0-486-42811-7

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8'k. 65355-2

PROBABILITY THEORY: A CONCISE COURSE, Y. A. Rozanov. Highly read-
able, self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. 148pp. 5% x 8;4. 0-486-63544-9

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8%. 0-486-65232-7
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Math-Geometry and Topology
ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant, intuitive
approach to topology from set-theoretic topology to Betti groups; how concepts of
topology are useful in math and physics. 25 figures. 57pp. 5% x 8%. 0-486-60747-X

COMBINATORIAL TOPOLOGY, P. S. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 5'/, x 8%. 0-486-40179-0

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity and
wit. 43 figures. 210pp. 5% x 8%. 0-486-25933-1

THE GEOMETRY OF RENE DESCARTES, Rene Descartes. The great work
founded analytical geometry. Original French text, Descartes's own diagrams, togeth-
er with definitive Smith-Latham translation. 244pp. 5% x 8%. 0-486-60068-8

EUCLIDEAN GEOMETRY AND TRANSFORMATIONS, Clayton W. Dodge.
This introduction to Euclidean geometry emphasizes transformations, particularly
isometries and similarities. Suitable for undergraduate courses, it includes numerous
examples, many with detailed answers. 1972 ed. viii+296pp. 6% x 9%. 0-486-43476-1

PRACTICAL CONIC SECTIONS: THE GEOMETRIC PROPERTIES OF
ELLIPSES, PARABOLAS AND HYPERBOLAS,J. W. Downs. This text shows how
to create ellipses, parabolas, and hyperbolas. It also presents historical background on
their ancient origins and describes the reflective properties and roles of curves in
design applications. 1993 ed. 98 figures. xii+100pp. 6'h x 9%. 0-486-42876-1

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and lin-
guistic notes, mathematical analysis. 2,500 years of critical commentary. Unabridged.
1,414pp. 5% x 8'h.. Three-vol. set.

Vol. I: 0-486-60088-2 Vol. II: 0-486-60089-0 Vol. III: 0-486-60090-4

SPACE AND GEOMETRY: IN THE LIGHT OF PHYSIOLOGICAL,
PSYCHOLOGICAL AND PHYSICAL INQUIRY, Ernst Mach. Three essays by
an eminent philosopher and scientist explore the nature, origin, and development of
our concepts of space, with a distinctness and precision suitable for undergraduate
students and other readers. 1906 ed. vi+l48pp. 5% x 8%. 0-486-43909-7

GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Illuminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 556 x 8%. 0-486-63830-8

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential geom-
etry as an application of advanced calculus and linear algebra. Curvature, transforma-
tion groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%. 0-486-63433-7
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History of Math
THE WORKS OF ARCHIMEDES, Archimedes (T. L. Heath, ed.). Topics include
the famous problems of the ratio of the areas of a cylinder and an inscribed sphere;
the measurement of a circle; the properties of conoids, spheroids, and spirals; and the
quadrature of the parabola. Informative introduction. clxxxvi+326pp. 5% x 8%.

0-486-42084-1

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8%. 0-486-20630-0

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%. 0-486-60509-4

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N. H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of modern
arithmetic, algebra, geometry and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8%. 0-486-25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajori. This classic
study notes the first appearance of a mathematical symbol and its origin, the com-
petition it encountered, its spread among writers in different countries, its rise to pop-
ularity, its eventual decline or ultimate survival. Original 1929 two-volume edition
presented here in one volume. xxviii+820pp. 5% x 8%. 0-486-67766-4

GAMES, GODS & GAMBLING: A HISTORY OF PROBABILITY AND
STATISTICAL IDEAS, F. N. David. Episodes from the lives of Galileo, Fermat,
Pascal, and others illustrate this fascinating account of the roots of mathematics.
Features thought-provoking references to classics, archaeology, biography, poetry.
1962 edition. 304pp. 5% x 8%. (Available in U.S. only.) 0-486-40023-9

OF MEN AND NUMBERS: THE STORY OF THE GREAT
MATHEMATICIANS, Jane Muir. Fascinating accounts of the lives and accom-
plishments of history's greatest mathematical minds-Pythagoras, Descartes, Euler,
Pascal, Cantor, many more. Anecdotal, illuminating. 30 diagrams. Bibliography.
256pp. 5% x 8%. 0-486-28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8%. Two-vol. set. Vol. I: 0-486-20429-4 Vol. II: 0-486-20430-8

A CONCISE HISTORY OF MATHEMATICS, DirkJ. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 0-486-60255-9
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Physics
OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen andJ. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical res-
onance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8'%. 0-486-65533-4

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 811. 0-486-65969-0

ATOMIC PHYSICS (8th EDITION), Max Bom. Nobel laureate's lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8'k. 0-486-65984-4

A SOPHISTICATE'S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
toward readers already acquainted with special relativity, this book transcends the
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a "law of nature"? What is the role of the "observer"? Extensive
treatment, written in terms accessible to those without a scientific background. 1983
ed. xlviii+172pp. 5% x 8'b. 0-486-42549-5

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 8'%. 0-486-67597-1

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Introductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and
bead in a spherical shell. Other topics include spin, matrices, and the structure of
quantum mechanics; the simplest atom; indistinguishable particles; and stationary-
state perturbation theory. 1992 ed. xiv+314pp. 6'i x 9'b. 0-486-42878-8
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